File size: 16,150 Bytes
5193146 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
import runpod
from runpod.serverless.utils import rp_upload
import json
import urllib.request
import urllib.parse
import time
import os
import requests
import base64
from io import BytesIO
from PIL import Image
# Time to wait between API check attempts in milliseconds
COMFY_API_AVAILABLE_INTERVAL_MS = 100
# Maximum number of API check attempts
COMFY_API_AVAILABLE_MAX_RETRIES = 500
# Time to wait between poll attempts in milliseconds
COMFY_POLLING_INTERVAL_MS = os.environ.get("COMFY_POLLING_INTERVAL_MS", 1000)
# Maximum number of poll attempts
COMFY_POLLING_MAX_RETRIES = os.environ.get("COMFY_POLLING_MAX_RETRIES", 1000)
# Host where ComfyUI is running
COMFY_HOST = "127.0.0.1:8188"
# Enforce a clean state after each job is done
# see https://docs.runpod.io/docs/handler-additional-controls#refresh-worker
REFRESH_WORKER = os.environ.get("REFRESH_WORKER", "false").lower() == "true"
# 是否把图片转为 webp,文件可以小不少
OUTPUT_WEBP = os.environ.get("OUTPUT_WEBP", "true").lower() == "true"
OUTPUT_RAW_OUTPUTS = os.environ.get("OUTPUT_RAW_OUTPUTS", "false").lower() == "true"
def validate_input(job_input):
"""
Validates the input for the handler function.
Args:
job_input (dict): The input data to validate.
Returns:
tuple: A tuple containing the validated data and an error message, if any.
The structure is (validated_data, error_message).
"""
# Validate if job_input is provided
if job_input is None:
return None, "Please provide input"
# Check if input is a string and try to parse it as JSON
if isinstance(job_input, str):
try:
job_input = json.loads(job_input)
except json.JSONDecodeError:
return None, "Invalid JSON format in input"
# Validate 'workflow' in input
workflow = job_input.get("workflow")
if workflow is None:
return None, "Missing 'workflow' parameter"
# Validate 'args' in input, if provided
args = job_input.get("args")
if args is not None:
if not isinstance(args, dict):
return (
None,
"'args' must be a dict",
)
# Return validated data and no error
return {"workflow": workflow, "args": args}, None
def check_server(url, retries=500, delay=50):
"""
Check if a server is reachable via HTTP GET request
Args:
- url (str): The URL to check
- retries (int, optional): The number of times to attempt connecting to the server. Default is 50
- delay (int, optional): The time in milliseconds to wait between retries. Default is 500
Returns:
bool: True if the server is reachable within the given number of retries, otherwise False
"""
for i in range(retries):
try:
response = requests.get(url)
# If the response status code is 200, the server is up and running
if response.status_code == 200:
print(f"runpod-worker-comfy - API is reachable")
return True
except requests.RequestException as e:
# If an exception occurs, the server may not be ready
pass
# Wait for the specified delay before retrying
time.sleep(delay / 1000)
print(
f"runpod-worker-comfy - Failed to connect to server at {url} after {retries} attempts."
)
return False
def upload_images(images):
"""
Upload a list of base64 encoded images to the ComfyUI server using the /upload/image endpoint.
Args:
images (list): A list of dictionaries, each containing the 'name' of the image and the 'image' as a base64 encoded string.
server_address (str): The address of the ComfyUI server.
Returns:
list: A list of responses from the server for each image upload.
"""
if not images:
return {"status": "success", "message": "No images to upload", "details": []}
responses = []
upload_errors = []
print(f"runpod-worker-comfy - image(s) upload")
for image in images:
name = image["name"]
image_data = image["image"]
blob = base64.b64decode(image_data)
# Prepare the form data
files = {
"image": (name, BytesIO(blob), "image/png"),
"overwrite": (None, "true"),
}
# POST request to upload the image
response = requests.post(f"http://{COMFY_HOST}/upload/image", files=files)
if response.status_code != 200:
upload_errors.append(f"Error uploading {name}: {response.text}")
else:
responses.append(f"Successfully uploaded {name}")
if upload_errors:
print(f"runpod-worker-comfy - image(s) upload with errors")
return {
"status": "error",
"message": "Some images failed to upload",
"details": upload_errors,
}
print(f"runpod-worker-comfy - image(s) upload complete")
return {
"status": "success",
"message": "All images uploaded successfully",
"details": responses,
}
def queue_workflow(workflow):
"""
Queue a workflow to be processed by ComfyUI
Args:
workflow (dict): A dictionary containing the workflow to be processed
Returns:
dict: The JSON response from ComfyUI after processing the workflow
"""
# The top level element "prompt" is required by ComfyUI
data = json.dumps({"prompt": workflow}).encode("utf-8")
req = urllib.request.Request(f"http://{COMFY_HOST}/prompt", data=data)
return json.loads(urllib.request.urlopen(req).read())
def get_history(prompt_id):
"""
Retrieve the history of a given prompt using its ID
Args:
prompt_id (str): The ID of the prompt whose history is to be retrieved
Returns:
dict: The history of the prompt, containing all the processing steps and results
"""
with urllib.request.urlopen(f"http://{COMFY_HOST}/history/{prompt_id}") as response:
return json.loads(response.read())
def base64_encode(img_path):
"""
Returns base64 encoded image.
Args:
img_path (str): The path to the image
Returns:
str: The base64 encoded image
"""
with open(img_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode("utf-8")
return f"{encoded_string}"
def process_output_images(outputs, job_id):
"""
This function takes the "outputs" from image generation and the job ID,
then determines the correct way to return the image, either as a direct URL
to an AWS S3 bucket or as a base64 encoded string, depending on the
environment configuration.
Args:
outputs (dict): A dictionary containing the outputs from image generation,
typically includes node IDs and their respective output data.
job_id (str): The unique identifier for the job.
Returns:
dict: A dictionary with the status ('success' or 'error') and the message,
which is either the URL to the image in the AWS S3 bucket or a base64
encoded string of the image. In case of error, the message details the issue.
The function works as follows:
- It first determines the output path for the images from an environment variable,
defaulting to "/comfyui/output" if not set.
- It then iterates through the outputs to find the filenames of the generated images.
- After confirming the existence of the image in the output folder, it checks if the
AWS S3 bucket is configured via the BUCKET_ENDPOINT_URL environment variable.
- If AWS S3 is configured, it uploads the image to the bucket and returns the URL.
- If AWS S3 is not configured, it encodes the image in base64 and returns the string.
- If the image file does not exist in the output folder, it returns an error status
with a message indicating the missing image file.
"""
# The path where ComfyUI stores the generated images
COMFY_OUTPUT_PATH = os.environ.get("COMFY_OUTPUT_PATH", "/comfyui/output")
output_images = {}
for node_id, node_output in outputs.items():
if "images" in node_output:
for image in node_output["images"]:
output_images = os.path.join(image["subfolder"], image["filename"])
print(f"runpod-worker-comfy - image generation is done")
# expected image output folder
local_image_path = f"{COMFY_OUTPUT_PATH}/{output_images}"
print(f"runpod-worker-comfy - {local_image_path}")
# The image is in the output folder
if os.path.exists(local_image_path):
if os.environ.get("BUCKET_ENDPOINT_URL", False):
# URL to image in AWS S3
image = rp_upload.upload_image(job_id, local_image_path)
print(
"runpod-worker-comfy - the image was generated and uploaded to AWS S3"
)
else:
# base64 image
image = base64_encode(local_image_path)
print(
"runpod-worker-comfy - the image was generated and converted to base64"
)
return {
"status": "success",
"message": image,
}
else:
print("runpod-worker-comfy - the image does not exist in the output folder")
return {
"status": "error",
"message": f"the image does not exist in the specified output folder: {local_image_path}",
}
def process_input(workflow, args):
"""
处理输入,根据输入参数,替换 workflow 中的参数,eg:
workflow: {"1": }
"""
for key, node in workflow.items():
if node["class_type"] in ["IntegerInput_fal", "FloatInput_fal", "BooleanInput_fal", "StringInput_fal"]:
input_name = node["inputs"]["name"]
if input_name in args:
# 更新节点的 inputs.value
if node["class_type"] in ["IntegerInput_fal", "FloatInput_fal"]:
node["inputs"]["number"] = args[input_name]
else:
node["inputs"]["value"] = args[input_name]
def convert_image_to_base64(filename):
"""将图像文件转换为 WebP 格式并返回 Base64 编码的字符串。"""
try:
COMFY_OUTPUT_PATH = os.environ.get("COMFY_OUTPUT_PATH", "/comfyui/output")
fullpath = os.path.join(COMFY_OUTPUT_PATH, filename)
if not OUTPUT_WEBP:
return "data:image/png;base64," + base64_encode(fullpath)
else:
with Image.open(fullpath) as img:
# 创建一个 BytesIO 对象来保存转换后的图像
with BytesIO() as output:
# 将图像转换为 WebP 格式并保存到 BytesIO
img.save(output, format="WebP")
# 获取 BytesIO 的内容并进行 Base64 编码
output.seek(0) # 重置指针到开头
return "data:image/webp;base64," + base64.b64encode(output.read()).decode('utf-8')
except Exception as e:
print(f"Error converting image {filename}: {e}")
return None
def process_output(workflow, outputs, jobid):
"""
根据保存的 node,返回保存的具体数据
workflow 形式为:
{
"433": {
"inputs": {
"filename_prefix": "result",
"output_name": "upscale",
"images": [
"466",
0
]
},
"class_type": "SaveImage_fal",
"_meta": {
"title": "Save Image (fal)"
}
},
}
outputs 形式为:
{"433": {"images": [{"filename": "xxx.png", "type": "output"}]}}
需要根据 433 找到 workflow 的输出名字,此处为 upscale 然后最终输出为:
{
"upscale": {"images": [{"filename": "xxx.png", "type": "output", "url": "data,webp,data:xxx"}]
}
"""
final_output = {}
# 遍历 workflow 中的每个工作流
for output_id, workflow_data in workflow.items():
# 只处理 class_type 为 SaveImage_fal 的工作流
if workflow_data["class_type"] == "SaveImage_fal":
# 从 outputs 中获取对应的图像数据
if output_id in outputs:
output_data = outputs[output_id]
output_name = workflow_data["inputs"]["output_name"]
# 处理输出,添加 url 字段
for image in output_data["images"]:
filename = image['filename']
# 转换图像为 WebP 格式并获取 Base64 编码
base64_image = convert_image_to_base64(filename)
if base64_image:
image["url"] = f"{base64_image}"
else:
image["url"] = None # 或者可以设置为某个默认值或错误信息
# 构建最终的输出格式
final_output[output_name] = {
"images": output_data["images"]
}
else:
print(f"Warning: output_id {output_id} not found in outputs.")
print(json.dumps(final_output, indent=4, ensure_ascii=False))
return final_output
def handler(job):
"""
The main function that handles a job of generating an image.
This function validates the input, sends a prompt to ComfyUI for processing,
polls ComfyUI for result, and retrieves generated images.
Args:
job (dict): A dictionary containing job details and input parameters.
Returns:
dict: A dictionary containing either an error message or a success status with generated images.
"""
job_input = job["input"]
# Make sure that the input is valid
validated_data, error_message = validate_input(job_input)
if error_message:
return {"error": error_message}
# Extract validated data
workflow = validated_data["workflow"]
args = validated_data.get("args")
process_input(workflow, args)
# Make sure that the ComfyUI API is available
check_server(
f"http://{COMFY_HOST}",
COMFY_API_AVAILABLE_MAX_RETRIES,
COMFY_API_AVAILABLE_INTERVAL_MS,
)
# Queue the workflow
try:
queued_workflow = queue_workflow(workflow)
prompt_id = queued_workflow["prompt_id"]
print(f"runpod-worker-comfy - queued workflow with ID {prompt_id}")
except Exception as e:
return {"error": f"Error queuing workflow: {str(e)}"}
# Poll for completion
print(f"runpod-worker-comfy - wait until image generation is complete")
retries = 0
try:
while retries < COMFY_POLLING_MAX_RETRIES:
history = get_history(prompt_id)
# Exit the loop if we have found the history
if prompt_id in history:
if history[prompt_id].get("outputs"):
break
elif history[prompt_id].get('status') and history[prompt_id].get('status').get('status_str')=='error':
return {"error": history[prompt_id].get('status').get('messages')[-1][1]['exception_message']}
else:
# Wait before trying again
time.sleep(COMFY_POLLING_INTERVAL_MS / 1000)
retries += 1
else:
return {"error": "Max retries reached while waiting for image generation"}
except Exception as e:
return {"error": f"Error waiting for image generation: {str(e)}"}
outputs = history[prompt_id].get("outputs")
jobid = job["id"]
# Get the generated image and return it as URL in an AWS bucket or as base64
# images_result = process_output_images(outputs, jobid)
output_result = process_output(workflow, outputs, jobid)
result = {"result": output_result, "refresh_worker": REFRESH_WORKER}
if OUTPUT_RAW_OUTPUTS:
result["outputs": outputs]
return result
# Start the handler only if this script is run directly
if __name__ == "__main__":
runpod.serverless.start({"handler": handler})
|