--- license: apache-2.0 base_model: google/bigbird-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: bigbird-roberta-base-finetuned-sql-classification-with_schema_question results: [] --- # bigbird-roberta-base-finetuned-sql-classification-with_schema_question This model is a fine-tuned version of [google/bigbird-roberta-base](https://huggingface.co/google/bigbird-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4232 - Accuracy: 0.8337 - F1: 0.8617 - Precision: 0.7971 - Recall: 0.9375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6156 | 1.0 | 1290 | 0.4973 | 0.7767 | 0.8292 | 0.7180 | 0.9811 | | 0.4798 | 2.0 | 2580 | 0.4877 | 0.7860 | 0.8358 | 0.7253 | 0.9860 | | 0.4841 | 3.0 | 3870 | 0.4767 | 0.7969 | 0.8400 | 0.7434 | 0.9656 | | 0.4573 | 4.0 | 5160 | 0.4716 | 0.8225 | 0.8513 | 0.7921 | 0.92 | | 0.4048 | 5.0 | 6450 | 0.4232 | 0.8337 | 0.8617 | 0.7971 | 0.9375 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2