PassbyGrocer commited on
Commit
beb524d
·
verified ·
1 Parent(s): 88ba0b1

End of training

Browse files
README.md CHANGED
@@ -1,166 +1,166 @@
1
- ---
2
- library_name: transformers
3
- base_model: google-bert/bert-base-chinese
4
- tags:
5
- - generated_from_trainer
6
- metrics:
7
- - precision
8
- - recall
9
- - f1
10
- - accuracy
11
- model-index:
12
- - name: bert_bilstm_mega_crf-ner-weibo
13
- results: []
14
- ---
15
-
16
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
- should probably proofread and complete it, then remove this comment. -->
18
-
19
- # bert_bilstm_mega_crf-ner-weibo
20
-
21
- This model is a fine-tuned version of [google-bert/bert-base-chinese](https://huggingface.co/google-bert/bert-base-chinese) on an unknown dataset.
22
- It achieves the following results on the evaluation set:
23
- - Loss: 0.2691
24
- - Precision: 0.6285
25
- - Recall: 0.7075
26
- - F1: 0.6657
27
- - Accuracy: 0.9667
28
-
29
- ## Model description
30
-
31
- More information needed
32
-
33
- ## Intended uses & limitations
34
-
35
- More information needed
36
-
37
- ## Training and evaluation data
38
-
39
- More information needed
40
-
41
- ## Training procedure
42
-
43
- ### Training hyperparameters
44
-
45
- The following hyperparameters were used during training:
46
- - learning_rate: 2e-05
47
- - train_batch_size: 32
48
- - eval_batch_size: 32
49
- - seed: 42
50
- - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
51
- - lr_scheduler_type: linear
52
- - num_epochs: 100
53
- - mixed_precision_training: Native AMP
54
-
55
- ### Training results
56
-
57
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
- |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
- | 0.0218 | 1.0 | 43 | 0.1575 | 0.6190 | 0.7358 | 0.6724 | 0.9645 |
60
- | 0.0159 | 2.0 | 86 | 0.1491 | 0.6105 | 0.7296 | 0.6648 | 0.9653 |
61
- | 0.0157 | 3.0 | 129 | 0.1643 | 0.5995 | 0.7107 | 0.6504 | 0.9647 |
62
- | 0.0147 | 4.0 | 172 | 0.1792 | 0.6103 | 0.7484 | 0.6723 | 0.9637 |
63
- | 0.0058 | 5.0 | 215 | 0.1812 | 0.6332 | 0.7327 | 0.6793 | 0.9685 |
64
- | 0.0103 | 6.0 | 258 | 0.1821 | 0.6188 | 0.7044 | 0.6588 | 0.9645 |
65
- | 0.0116 | 7.0 | 301 | 0.1769 | 0.6207 | 0.7358 | 0.6734 | 0.9664 |
66
- | 0.0112 | 8.0 | 344 | 0.1691 | 0.6334 | 0.7390 | 0.6821 | 0.9678 |
67
- | 0.0067 | 9.0 | 387 | 0.1768 | 0.6166 | 0.7233 | 0.6657 | 0.9669 |
68
- | 0.0078 | 10.0 | 430 | 0.1827 | 0.6171 | 0.6792 | 0.6467 | 0.9678 |
69
- | 0.0073 | 11.0 | 473 | 0.1903 | 0.6450 | 0.6855 | 0.6646 | 0.9685 |
70
- | 0.0173 | 12.0 | 516 | 0.1910 | 0.5964 | 0.7390 | 0.6601 | 0.9630 |
71
- | 0.0045 | 13.0 | 559 | 0.1909 | 0.6146 | 0.7170 | 0.6618 | 0.9663 |
72
- | 0.0067 | 14.0 | 602 | 0.1846 | 0.6127 | 0.7264 | 0.6647 | 0.9669 |
73
- | 0.0063 | 15.0 | 645 | 0.1982 | 0.6359 | 0.7138 | 0.6726 | 0.9677 |
74
- | 0.0051 | 16.0 | 688 | 0.1902 | 0.6260 | 0.7264 | 0.6725 | 0.9662 |
75
- | 0.0058 | 17.0 | 731 | 0.1948 | 0.6292 | 0.7044 | 0.6647 | 0.9682 |
76
- | 0.0063 | 18.0 | 774 | 0.2043 | 0.6350 | 0.6730 | 0.6534 | 0.9678 |
77
- | 0.0054 | 19.0 | 817 | 0.2083 | 0.6340 | 0.6918 | 0.6617 | 0.9677 |
78
- | 0.0042 | 20.0 | 860 | 0.2087 | 0.6339 | 0.7296 | 0.6784 | 0.9674 |
79
- | 0.0051 | 21.0 | 903 | 0.2018 | 0.6494 | 0.6698 | 0.6594 | 0.9676 |
80
- | 0.0062 | 22.0 | 946 | 0.1954 | 0.6510 | 0.6981 | 0.6737 | 0.9676 |
81
- | 0.0048 | 23.0 | 989 | 0.2272 | 0.6192 | 0.7107 | 0.6618 | 0.9662 |
82
- | 0.0037 | 24.0 | 1032 | 0.2109 | 0.6501 | 0.7013 | 0.6747 | 0.9682 |
83
- | 0.0079 | 25.0 | 1075 | 0.2061 | 0.6233 | 0.7390 | 0.6763 | 0.9660 |
84
- | 0.004 | 26.0 | 1118 | 0.2104 | 0.6404 | 0.7170 | 0.6766 | 0.9671 |
85
- | 0.0047 | 27.0 | 1161 | 0.2019 | 0.6326 | 0.7201 | 0.6735 | 0.9678 |
86
- | 0.0036 | 28.0 | 1204 | 0.2157 | 0.6369 | 0.7390 | 0.6841 | 0.9671 |
87
- | 0.0038 | 29.0 | 1247 | 0.2115 | 0.6257 | 0.7201 | 0.6696 | 0.9672 |
88
- | 0.0087 | 30.0 | 1290 | 0.2173 | 0.6278 | 0.7107 | 0.6667 | 0.9673 |
89
- | 0.0034 | 31.0 | 1333 | 0.2217 | 0.6185 | 0.7138 | 0.6628 | 0.9665 |
90
- | 0.0046 | 32.0 | 1376 | 0.2051 | 0.6361 | 0.6981 | 0.6657 | 0.9671 |
91
- | 0.0027 | 33.0 | 1419 | 0.2214 | 0.6410 | 0.7075 | 0.6726 | 0.9676 |
92
- | 0.0049 | 34.0 | 1462 | 0.2183 | 0.6543 | 0.7201 | 0.6856 | 0.9675 |
93
- | 0.0028 | 35.0 | 1505 | 0.2200 | 0.6449 | 0.7138 | 0.6776 | 0.9679 |
94
- | 0.0064 | 36.0 | 1548 | 0.2290 | 0.6395 | 0.6918 | 0.6647 | 0.9673 |
95
- | 0.0044 | 37.0 | 1591 | 0.2252 | 0.6526 | 0.6792 | 0.6656 | 0.9673 |
96
- | 0.0034 | 38.0 | 1634 | 0.2364 | 0.675 | 0.6792 | 0.6771 | 0.9670 |
97
- | 0.0066 | 39.0 | 1677 | 0.2254 | 0.6341 | 0.7138 | 0.6716 | 0.9651 |
98
- | 0.0032 | 40.0 | 1720 | 0.2257 | 0.6316 | 0.7170 | 0.6716 | 0.9674 |
99
- | 0.003 | 41.0 | 1763 | 0.2229 | 0.6461 | 0.7233 | 0.6825 | 0.9678 |
100
- | 0.0018 | 42.0 | 1806 | 0.2315 | 0.6550 | 0.7044 | 0.6788 | 0.9676 |
101
- | 0.0031 | 43.0 | 1849 | 0.2327 | 0.6324 | 0.7358 | 0.6802 | 0.9674 |
102
- | 0.0036 | 44.0 | 1892 | 0.2330 | 0.625 | 0.7075 | 0.6637 | 0.9665 |
103
- | 0.0031 | 45.0 | 1935 | 0.2371 | 0.6449 | 0.7138 | 0.6776 | 0.9667 |
104
- | 0.0039 | 46.0 | 1978 | 0.2379 | 0.6647 | 0.7044 | 0.6840 | 0.9670 |
105
- | 0.004 | 47.0 | 2021 | 0.2398 | 0.6469 | 0.7201 | 0.6815 | 0.9674 |
106
- | 0.0027 | 48.0 | 2064 | 0.2437 | 0.6628 | 0.7107 | 0.6859 | 0.9676 |
107
- | 0.0037 | 49.0 | 2107 | 0.2465 | 0.6638 | 0.7327 | 0.6966 | 0.9681 |
108
- | 0.0047 | 50.0 | 2150 | 0.2452 | 0.6609 | 0.7170 | 0.6878 | 0.9671 |
109
- | 0.0029 | 51.0 | 2193 | 0.2386 | 0.6607 | 0.6981 | 0.6789 | 0.9674 |
110
- | 0.0036 | 52.0 | 2236 | 0.2479 | 0.6402 | 0.7107 | 0.6736 | 0.9676 |
111
- | 0.0047 | 53.0 | 2279 | 0.2440 | 0.6496 | 0.7170 | 0.6816 | 0.9675 |
112
- | 0.0024 | 54.0 | 2322 | 0.2344 | 0.6687 | 0.7044 | 0.6861 | 0.9678 |
113
- | 0.0039 | 55.0 | 2365 | 0.2450 | 0.6247 | 0.7170 | 0.6676 | 0.9669 |
114
- | 0.0026 | 56.0 | 2408 | 0.2404 | 0.6494 | 0.7107 | 0.6787 | 0.9669 |
115
- | 0.005 | 57.0 | 2451 | 0.2472 | 0.6425 | 0.7233 | 0.6805 | 0.9666 |
116
- | 0.0031 | 58.0 | 2494 | 0.2478 | 0.6417 | 0.7264 | 0.6814 | 0.9665 |
117
- | 0.0021 | 59.0 | 2537 | 0.2479 | 0.6356 | 0.7075 | 0.6696 | 0.9665 |
118
- | 0.0021 | 60.0 | 2580 | 0.2457 | 0.6469 | 0.7201 | 0.6815 | 0.9670 |
119
- | 0.0028 | 61.0 | 2623 | 0.2517 | 0.6516 | 0.7233 | 0.6855 | 0.9671 |
120
- | 0.0033 | 62.0 | 2666 | 0.2580 | 0.6512 | 0.7044 | 0.6767 | 0.9668 |
121
- | 0.0023 | 63.0 | 2709 | 0.2546 | 0.6484 | 0.7075 | 0.6767 | 0.9666 |
122
- | 0.0025 | 64.0 | 2752 | 0.2549 | 0.6439 | 0.7107 | 0.6756 | 0.9663 |
123
- | 0.0041 | 65.0 | 2795 | 0.2619 | 0.6311 | 0.7264 | 0.6754 | 0.9664 |
124
- | 0.0036 | 66.0 | 2838 | 0.2583 | 0.6389 | 0.7233 | 0.6785 | 0.9667 |
125
- | 0.0036 | 67.0 | 2881 | 0.2579 | 0.6399 | 0.7264 | 0.6804 | 0.9663 |
126
- | 0.0031 | 68.0 | 2924 | 0.2585 | 0.6425 | 0.7233 | 0.6805 | 0.9662 |
127
- | 0.0031 | 69.0 | 2967 | 0.2529 | 0.6366 | 0.7107 | 0.6716 | 0.9661 |
128
- | 0.0027 | 70.0 | 3010 | 0.2527 | 0.6477 | 0.7170 | 0.6806 | 0.9664 |
129
- | 0.0023 | 71.0 | 3053 | 0.2568 | 0.6524 | 0.7201 | 0.6846 | 0.9667 |
130
- | 0.0025 | 72.0 | 3096 | 0.2587 | 0.6449 | 0.7138 | 0.6776 | 0.9668 |
131
- | 0.0022 | 73.0 | 3139 | 0.2609 | 0.6552 | 0.7170 | 0.6847 | 0.9670 |
132
- | 0.0033 | 74.0 | 3182 | 0.2596 | 0.6542 | 0.7138 | 0.6827 | 0.9669 |
133
- | 0.0038 | 75.0 | 3225 | 0.2608 | 0.6503 | 0.7075 | 0.6777 | 0.9667 |
134
- | 0.0038 | 76.0 | 3268 | 0.2623 | 0.6532 | 0.7107 | 0.6807 | 0.9670 |
135
- | 0.0023 | 77.0 | 3311 | 0.2548 | 0.6459 | 0.7170 | 0.6796 | 0.9666 |
136
- | 0.0029 | 78.0 | 3354 | 0.2588 | 0.6404 | 0.7170 | 0.6766 | 0.9667 |
137
- | 0.0033 | 79.0 | 3397 | 0.2640 | 0.6366 | 0.7327 | 0.6813 | 0.9660 |
138
- | 0.0031 | 80.0 | 3440 | 0.2647 | 0.6419 | 0.7327 | 0.6843 | 0.9654 |
139
- | 0.003 | 81.0 | 3483 | 0.2574 | 0.6476 | 0.7107 | 0.6777 | 0.9670 |
140
- | 0.003 | 82.0 | 3526 | 0.2591 | 0.6412 | 0.7138 | 0.6756 | 0.9669 |
141
- | 0.0046 | 83.0 | 3569 | 0.2605 | 0.6441 | 0.7170 | 0.6786 | 0.9669 |
142
- | 0.0026 | 84.0 | 3612 | 0.2615 | 0.6439 | 0.7107 | 0.6756 | 0.9670 |
143
- | 0.0031 | 85.0 | 3655 | 0.2619 | 0.6277 | 0.7264 | 0.6735 | 0.9664 |
144
- | 0.005 | 86.0 | 3698 | 0.2645 | 0.6417 | 0.7264 | 0.6814 | 0.9667 |
145
- | 0.0038 | 87.0 | 3741 | 0.2646 | 0.6376 | 0.7138 | 0.6736 | 0.9664 |
146
- | 0.0037 | 88.0 | 3784 | 0.2642 | 0.6306 | 0.7138 | 0.6696 | 0.9663 |
147
- | 0.0037 | 89.0 | 3827 | 0.2660 | 0.6343 | 0.7201 | 0.6745 | 0.9665 |
148
- | 0.0027 | 90.0 | 3870 | 0.2670 | 0.6306 | 0.7138 | 0.6696 | 0.9667 |
149
- | 0.002 | 91.0 | 3913 | 0.2675 | 0.6260 | 0.7107 | 0.6657 | 0.9665 |
150
- | 0.0036 | 92.0 | 3956 | 0.2697 | 0.6288 | 0.7138 | 0.6686 | 0.9665 |
151
- | 0.0021 | 93.0 | 3999 | 0.2700 | 0.6260 | 0.7107 | 0.6657 | 0.9665 |
152
- | 0.0029 | 94.0 | 4042 | 0.2693 | 0.6260 | 0.7107 | 0.6657 | 0.9665 |
153
- | 0.0035 | 95.0 | 4085 | 0.2689 | 0.6260 | 0.7107 | 0.6657 | 0.9666 |
154
- | 0.0017 | 96.0 | 4128 | 0.2696 | 0.6260 | 0.7107 | 0.6657 | 0.9667 |
155
- | 0.003 | 97.0 | 4171 | 0.2702 | 0.6260 | 0.7107 | 0.6657 | 0.9665 |
156
- | 0.0031 | 98.0 | 4214 | 0.2699 | 0.6295 | 0.7107 | 0.6677 | 0.9667 |
157
- | 0.0027 | 99.0 | 4257 | 0.2690 | 0.6303 | 0.7075 | 0.6667 | 0.9668 |
158
- | 0.0023 | 100.0 | 4300 | 0.2691 | 0.6285 | 0.7075 | 0.6657 | 0.9667 |
159
-
160
-
161
- ### Framework versions
162
-
163
- - Transformers 4.46.1
164
- - Pytorch 1.13.1+cu116
165
- - Datasets 3.1.0
166
- - Tokenizers 0.20.1
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: hfl/chinese-roberta-wwm-ext-large
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: bert_bilstm_mega_crf-ner-weibo
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # bert_bilstm_mega_crf-ner-weibo
21
+
22
+ This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large) on an unknown dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.2341
25
+ - Precision: 0.6657
26
+ - Recall: 0.7075
27
+ - F1: 0.6860
28
+ - Accuracy: 0.9683
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 5e-05
48
+ - train_batch_size: 128
49
+ - eval_batch_size: 128
50
+ - seed: 42
51
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 100
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 1.7329 | 1.0 | 11 | 0.4907 | 0.0 | 0.0 | 0.0 | 0.9274 |
60
+ | 0.4493 | 2.0 | 22 | 0.3486 | 0.0 | 0.0 | 0.0 | 0.9274 |
61
+ | 0.3203 | 3.0 | 33 | 0.2384 | 0.2941 | 0.0629 | 0.1036 | 0.9354 |
62
+ | 0.2259 | 4.0 | 44 | 0.1618 | 0.5219 | 0.4874 | 0.5041 | 0.9586 |
63
+ | 0.1617 | 5.0 | 55 | 0.1318 | 0.5476 | 0.5975 | 0.5714 | 0.9642 |
64
+ | 0.1171 | 6.0 | 66 | 0.1202 | 0.5718 | 0.6509 | 0.6088 | 0.9676 |
65
+ | 0.0956 | 7.0 | 77 | 0.1210 | 0.6022 | 0.6855 | 0.6412 | 0.9692 |
66
+ | 0.0666 | 8.0 | 88 | 0.1208 | 0.5951 | 0.6887 | 0.6385 | 0.9690 |
67
+ | 0.0567 | 9.0 | 99 | 0.1205 | 0.5963 | 0.7107 | 0.6485 | 0.9687 |
68
+ | 0.0433 | 10.0 | 110 | 0.1219 | 0.6230 | 0.7170 | 0.6667 | 0.9699 |
69
+ | 0.0333 | 11.0 | 121 | 0.1365 | 0.6375 | 0.6635 | 0.6502 | 0.9687 |
70
+ | 0.0309 | 12.0 | 132 | 0.1421 | 0.6011 | 0.6918 | 0.6433 | 0.9672 |
71
+ | 0.0239 | 13.0 | 143 | 0.1460 | 0.6398 | 0.6981 | 0.6677 | 0.9687 |
72
+ | 0.0235 | 14.0 | 154 | 0.1539 | 0.6518 | 0.6887 | 0.6697 | 0.9687 |
73
+ | 0.0188 | 15.0 | 165 | 0.1604 | 0.6656 | 0.6824 | 0.6739 | 0.9694 |
74
+ | 0.0193 | 16.0 | 176 | 0.1625 | 0.6471 | 0.6918 | 0.6687 | 0.9687 |
75
+ | 0.0155 | 17.0 | 187 | 0.1758 | 0.6770 | 0.6855 | 0.6813 | 0.9683 |
76
+ | 0.0148 | 18.0 | 198 | 0.1714 | 0.6506 | 0.6792 | 0.6646 | 0.9688 |
77
+ | 0.014 | 19.0 | 209 | 0.1626 | 0.6391 | 0.7296 | 0.6814 | 0.9674 |
78
+ | 0.0116 | 20.0 | 220 | 0.1718 | 0.6459 | 0.7170 | 0.6796 | 0.9687 |
79
+ | 0.0111 | 21.0 | 231 | 0.1840 | 0.6718 | 0.6824 | 0.6771 | 0.9694 |
80
+ | 0.0097 | 22.0 | 242 | 0.1807 | 0.6479 | 0.6887 | 0.6677 | 0.9677 |
81
+ | 0.0098 | 23.0 | 253 | 0.1787 | 0.6391 | 0.7296 | 0.6814 | 0.9664 |
82
+ | 0.0089 | 24.0 | 264 | 0.1877 | 0.6518 | 0.6887 | 0.6697 | 0.9688 |
83
+ | 0.0077 | 25.0 | 275 | 0.1896 | 0.6519 | 0.6950 | 0.6728 | 0.9693 |
84
+ | 0.008 | 26.0 | 286 | 0.1915 | 0.6608 | 0.7107 | 0.6848 | 0.9690 |
85
+ | 0.0079 | 27.0 | 297 | 0.2008 | 0.6606 | 0.6792 | 0.6698 | 0.9687 |
86
+ | 0.0072 | 28.0 | 308 | 0.1961 | 0.6486 | 0.7138 | 0.6796 | 0.9681 |
87
+ | 0.0067 | 29.0 | 319 | 0.2040 | 0.6617 | 0.7013 | 0.6809 | 0.9691 |
88
+ | 0.0063 | 30.0 | 330 | 0.2028 | 0.6725 | 0.7296 | 0.6998 | 0.9688 |
89
+ | 0.0056 | 31.0 | 341 | 0.2053 | 0.6716 | 0.7201 | 0.6950 | 0.9689 |
90
+ | 0.0073 | 32.0 | 352 | 0.2088 | 0.6465 | 0.6730 | 0.6595 | 0.9674 |
91
+ | 0.0061 | 33.0 | 363 | 0.1936 | 0.6138 | 0.7296 | 0.6667 | 0.9673 |
92
+ | 0.0057 | 34.0 | 374 | 0.2061 | 0.6596 | 0.6824 | 0.6708 | 0.9683 |
93
+ | 0.0062 | 35.0 | 385 | 0.2077 | 0.6627 | 0.7044 | 0.6829 | 0.9680 |
94
+ | 0.0046 | 36.0 | 396 | 0.2133 | 0.6738 | 0.6950 | 0.6842 | 0.9689 |
95
+ | 0.0062 | 37.0 | 407 | 0.2029 | 0.6696 | 0.7201 | 0.6939 | 0.9680 |
96
+ | 0.0058 | 38.0 | 418 | 0.2039 | 0.6707 | 0.7044 | 0.6871 | 0.9678 |
97
+ | 0.0047 | 39.0 | 429 | 0.2055 | 0.6667 | 0.7233 | 0.6938 | 0.9685 |
98
+ | 0.0049 | 40.0 | 440 | 0.2105 | 0.6757 | 0.7075 | 0.6912 | 0.9692 |
99
+ | 0.0048 | 41.0 | 451 | 0.2052 | 0.6667 | 0.7107 | 0.6880 | 0.9683 |
100
+ | 0.0049 | 42.0 | 462 | 0.2081 | 0.6590 | 0.7170 | 0.6867 | 0.9687 |
101
+ | 0.0063 | 43.0 | 473 | 0.2011 | 0.6552 | 0.7170 | 0.6847 | 0.9683 |
102
+ | 0.0046 | 44.0 | 484 | 0.1994 | 0.6477 | 0.7170 | 0.6806 | 0.9676 |
103
+ | 0.0047 | 45.0 | 495 | 0.2122 | 0.6790 | 0.6918 | 0.6854 | 0.9693 |
104
+ | 0.0048 | 46.0 | 506 | 0.2082 | 0.6609 | 0.7233 | 0.6907 | 0.9687 |
105
+ | 0.0042 | 47.0 | 517 | 0.2140 | 0.6769 | 0.6918 | 0.6843 | 0.9695 |
106
+ | 0.0054 | 48.0 | 528 | 0.2054 | 0.6514 | 0.7170 | 0.6826 | 0.9681 |
107
+ | 0.0037 | 49.0 | 539 | 0.2070 | 0.6686 | 0.7107 | 0.6890 | 0.9689 |
108
+ | 0.0045 | 50.0 | 550 | 0.2093 | 0.6514 | 0.7170 | 0.6826 | 0.9686 |
109
+ | 0.004 | 51.0 | 561 | 0.2163 | 0.6787 | 0.7107 | 0.6943 | 0.9698 |
110
+ | 0.0038 | 52.0 | 572 | 0.2173 | 0.6706 | 0.7107 | 0.6901 | 0.9694 |
111
+ | 0.0042 | 53.0 | 583 | 0.2156 | 0.6745 | 0.7233 | 0.6980 | 0.9694 |
112
+ | 0.0039 | 54.0 | 594 | 0.2190 | 0.6727 | 0.6981 | 0.6852 | 0.9689 |
113
+ | 0.0037 | 55.0 | 605 | 0.2213 | 0.6767 | 0.7044 | 0.6903 | 0.9687 |
114
+ | 0.0043 | 56.0 | 616 | 0.2247 | 0.6829 | 0.7044 | 0.6935 | 0.9690 |
115
+ | 0.0034 | 57.0 | 627 | 0.2291 | 0.6789 | 0.6981 | 0.6884 | 0.9689 |
116
+ | 0.0046 | 58.0 | 638 | 0.2258 | 0.6737 | 0.7075 | 0.6902 | 0.9686 |
117
+ | 0.0033 | 59.0 | 649 | 0.2254 | 0.6736 | 0.7138 | 0.6931 | 0.9689 |
118
+ | 0.0036 | 60.0 | 660 | 0.2255 | 0.6758 | 0.7013 | 0.6883 | 0.9690 |
119
+ | 0.0038 | 61.0 | 671 | 0.2200 | 0.6580 | 0.7138 | 0.6848 | 0.9682 |
120
+ | 0.0036 | 62.0 | 682 | 0.2210 | 0.6657 | 0.7075 | 0.6860 | 0.9687 |
121
+ | 0.0039 | 63.0 | 693 | 0.2237 | 0.6647 | 0.7107 | 0.6869 | 0.9682 |
122
+ | 0.0039 | 64.0 | 704 | 0.2295 | 0.6727 | 0.6981 | 0.6852 | 0.9688 |
123
+ | 0.0032 | 65.0 | 715 | 0.2271 | 0.6707 | 0.7044 | 0.6871 | 0.9687 |
124
+ | 0.0038 | 66.0 | 726 | 0.2290 | 0.6677 | 0.7013 | 0.6840 | 0.9687 |
125
+ | 0.0033 | 67.0 | 737 | 0.2260 | 0.6617 | 0.7013 | 0.6809 | 0.9682 |
126
+ | 0.0038 | 68.0 | 748 | 0.2250 | 0.6676 | 0.7138 | 0.6900 | 0.9686 |
127
+ | 0.0037 | 69.0 | 759 | 0.2254 | 0.6618 | 0.7075 | 0.6839 | 0.9684 |
128
+ | 0.0039 | 70.0 | 770 | 0.2281 | 0.6687 | 0.6981 | 0.6831 | 0.9687 |
129
+ | 0.0036 | 71.0 | 781 | 0.2317 | 0.6687 | 0.6981 | 0.6831 | 0.9687 |
130
+ | 0.0034 | 72.0 | 792 | 0.2272 | 0.6609 | 0.7170 | 0.6878 | 0.9686 |
131
+ | 0.0036 | 73.0 | 803 | 0.2278 | 0.6756 | 0.7138 | 0.6942 | 0.9687 |
132
+ | 0.0035 | 74.0 | 814 | 0.2287 | 0.6677 | 0.7075 | 0.6870 | 0.9683 |
133
+ | 0.0034 | 75.0 | 825 | 0.2283 | 0.6686 | 0.7107 | 0.6890 | 0.9681 |
134
+ | 0.0032 | 76.0 | 836 | 0.2331 | 0.6657 | 0.7075 | 0.6860 | 0.9672 |
135
+ | 0.0041 | 77.0 | 847 | 0.2357 | 0.6598 | 0.7075 | 0.6829 | 0.9675 |
136
+ | 0.0033 | 78.0 | 858 | 0.2352 | 0.6706 | 0.7170 | 0.6930 | 0.9676 |
137
+ | 0.0039 | 79.0 | 869 | 0.2363 | 0.6696 | 0.7075 | 0.6881 | 0.9689 |
138
+ | 0.0036 | 80.0 | 880 | 0.2367 | 0.6627 | 0.6918 | 0.6769 | 0.9685 |
139
+ | 0.0032 | 81.0 | 891 | 0.2369 | 0.6607 | 0.6981 | 0.6789 | 0.9683 |
140
+ | 0.0036 | 82.0 | 902 | 0.2331 | 0.6696 | 0.7201 | 0.6939 | 0.9687 |
141
+ | 0.0036 | 83.0 | 913 | 0.2286 | 0.6599 | 0.7138 | 0.6858 | 0.9682 |
142
+ | 0.0034 | 84.0 | 924 | 0.2276 | 0.6637 | 0.7138 | 0.6879 | 0.9687 |
143
+ | 0.0035 | 85.0 | 935 | 0.2286 | 0.6647 | 0.7107 | 0.6869 | 0.9687 |
144
+ | 0.0031 | 86.0 | 946 | 0.2296 | 0.6667 | 0.7044 | 0.6850 | 0.9689 |
145
+ | 0.0036 | 87.0 | 957 | 0.2296 | 0.6677 | 0.7075 | 0.6870 | 0.9687 |
146
+ | 0.0033 | 88.0 | 968 | 0.2299 | 0.6706 | 0.7170 | 0.6930 | 0.9688 |
147
+ | 0.0033 | 89.0 | 979 | 0.2301 | 0.6618 | 0.7138 | 0.6868 | 0.9683 |
148
+ | 0.0034 | 90.0 | 990 | 0.2320 | 0.6766 | 0.7170 | 0.6962 | 0.9687 |
149
+ | 0.0031 | 91.0 | 1001 | 0.2309 | 0.6766 | 0.7170 | 0.6962 | 0.9686 |
150
+ | 0.0033 | 92.0 | 1012 | 0.2315 | 0.6736 | 0.7138 | 0.6931 | 0.9685 |
151
+ | 0.0037 | 93.0 | 1023 | 0.2333 | 0.6696 | 0.7075 | 0.6881 | 0.9684 |
152
+ | 0.0031 | 94.0 | 1034 | 0.2342 | 0.6696 | 0.7075 | 0.6881 | 0.9684 |
153
+ | 0.0029 | 95.0 | 1045 | 0.2351 | 0.6687 | 0.7044 | 0.6861 | 0.9683 |
154
+ | 0.004 | 96.0 | 1056 | 0.2347 | 0.6667 | 0.7044 | 0.6850 | 0.9683 |
155
+ | 0.0032 | 97.0 | 1067 | 0.2346 | 0.6667 | 0.7044 | 0.6850 | 0.9683 |
156
+ | 0.0033 | 98.0 | 1078 | 0.2343 | 0.6667 | 0.7044 | 0.6850 | 0.9683 |
157
+ | 0.0032 | 99.0 | 1089 | 0.2341 | 0.6647 | 0.7044 | 0.6840 | 0.9682 |
158
+ | 0.0034 | 100.0 | 1100 | 0.2341 | 0.6657 | 0.7075 | 0.6860 | 0.9683 |
159
+
160
+
161
+ ### Framework versions
162
+
163
+ - Transformers 4.46.2
164
+ - Pytorch 2.4.1+cu124
165
+ - Datasets 3.1.0
166
+ - Tokenizers 0.20.3
config.json CHANGED
@@ -1,69 +1,72 @@
1
- {
2
- "_name_or_path": "google-bert/bert-base-chinese",
3
- "architectures": [
4
- "BertForTokenClassification"
5
- ],
6
- "attention_probs_dropout_prob": 0.1,
7
- "classifier_dropout": null,
8
- "directionality": "bidi",
9
- "hidden_act": "gelu",
10
- "hidden_dropout_prob": 0.1,
11
- "hidden_size": 768,
12
- "id2label": {
13
- "0": "O",
14
- "1": "B-GPE.NAM",
15
- "2": "I-GPE.NAM",
16
- "3": "B-GPE.NOM",
17
- "4": "I-GPE.NOM",
18
- "5": "B-LOC.NAM",
19
- "6": "I-LOC.NAM",
20
- "7": "B-LOC.NOM",
21
- "8": "I-LOC.NOM",
22
- "9": "B-ORG.NAM",
23
- "10": "I-ORG.NAM",
24
- "11": "B-ORG.NOM",
25
- "12": "I-ORG.NOM",
26
- "13": "B-PER.NAM",
27
- "14": "I-PER.NAM",
28
- "15": "B-PER.NOM",
29
- "16": "I-PER.NOM"
30
- },
31
- "initializer_range": 0.02,
32
- "intermediate_size": 3072,
33
- "label2id": {
34
- "B-GPE.NAM": 1,
35
- "B-GPE.NOM": 3,
36
- "B-LOC.NAM": 5,
37
- "B-LOC.NOM": 7,
38
- "B-ORG.NAM": 9,
39
- "B-ORG.NOM": 11,
40
- "B-PER.NAM": 13,
41
- "B-PER.NOM": 15,
42
- "I-GPE.NAM": 2,
43
- "I-GPE.NOM": 4,
44
- "I-LOC.NAM": 6,
45
- "I-LOC.NOM": 8,
46
- "I-ORG.NAM": 10,
47
- "I-ORG.NOM": 12,
48
- "I-PER.NAM": 14,
49
- "I-PER.NOM": 16,
50
- "O": 0
51
- },
52
- "layer_norm_eps": 1e-12,
53
- "max_position_embeddings": 512,
54
- "model_type": "bert",
55
- "num_attention_heads": 12,
56
- "num_hidden_layers": 12,
57
- "pad_token_id": 0,
58
- "pooler_fc_size": 768,
59
- "pooler_num_attention_heads": 12,
60
- "pooler_num_fc_layers": 3,
61
- "pooler_size_per_head": 128,
62
- "pooler_type": "first_token_transform",
63
- "position_embedding_type": "absolute",
64
- "torch_dtype": "float32",
65
- "transformers_version": "4.46.1",
66
- "type_vocab_size": 2,
67
- "use_cache": true,
68
- "vocab_size": 21128
69
- }
 
 
 
 
1
+ {
2
+ "_name_or_path": "hfl/chinese-roberta-wwm-ext-large",
3
+ "architectures": [
4
+ "BertForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "directionality": "bidi",
10
+ "eos_token_id": 2,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 1024,
14
+ "id2label": {
15
+ "0": "O",
16
+ "1": "B-GPE.NAM",
17
+ "2": "I-GPE.NAM",
18
+ "3": "B-GPE.NOM",
19
+ "4": "I-GPE.NOM",
20
+ "5": "B-LOC.NAM",
21
+ "6": "I-LOC.NAM",
22
+ "7": "B-LOC.NOM",
23
+ "8": "I-LOC.NOM",
24
+ "9": "B-ORG.NAM",
25
+ "10": "I-ORG.NAM",
26
+ "11": "B-ORG.NOM",
27
+ "12": "I-ORG.NOM",
28
+ "13": "B-PER.NAM",
29
+ "14": "I-PER.NAM",
30
+ "15": "B-PER.NOM",
31
+ "16": "I-PER.NOM"
32
+ },
33
+ "initializer_range": 0.02,
34
+ "intermediate_size": 4096,
35
+ "label2id": {
36
+ "B-GPE.NAM": 1,
37
+ "B-GPE.NOM": 3,
38
+ "B-LOC.NAM": 5,
39
+ "B-LOC.NOM": 7,
40
+ "B-ORG.NAM": 9,
41
+ "B-ORG.NOM": 11,
42
+ "B-PER.NAM": 13,
43
+ "B-PER.NOM": 15,
44
+ "I-GPE.NAM": 2,
45
+ "I-GPE.NOM": 4,
46
+ "I-LOC.NAM": 6,
47
+ "I-LOC.NOM": 8,
48
+ "I-ORG.NAM": 10,
49
+ "I-ORG.NOM": 12,
50
+ "I-PER.NAM": 14,
51
+ "I-PER.NOM": 16,
52
+ "O": 0
53
+ },
54
+ "layer_norm_eps": 1e-12,
55
+ "max_position_embeddings": 512,
56
+ "model_type": "bert",
57
+ "num_attention_heads": 16,
58
+ "num_hidden_layers": 24,
59
+ "output_past": true,
60
+ "pad_token_id": 0,
61
+ "pooler_fc_size": 768,
62
+ "pooler_num_attention_heads": 12,
63
+ "pooler_num_fc_layers": 3,
64
+ "pooler_size_per_head": 128,
65
+ "pooler_type": "first_token_transform",
66
+ "position_embedding_type": "absolute",
67
+ "torch_dtype": "float32",
68
+ "transformers_version": "4.46.2",
69
+ "type_vocab_size": 2,
70
+ "use_cache": true,
71
+ "vocab_size": 21128
72
+ }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4bb965ea226342c892c34ef0d9a56b7ca023612dc795da45195095902a8275fa
3
- size 406783828
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dda6fcb04a69067e11eb87f057d11f711a4a5919091b5f0dad2125fcae6b999
3
+ size 1298007804
special_tokens_map.json CHANGED
@@ -1,7 +1,37 @@
1
- {
2
- "cls_token": "[CLS]",
3
- "mask_token": "[MASK]",
4
- "pad_token": "[PAD]",
5
- "sep_token": "[SEP]",
6
- "unk_token": "[UNK]"
7
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json CHANGED
@@ -68,7 +68,7 @@
68
  "clean_text": true,
69
  "handle_chinese_chars": true,
70
  "strip_accents": null,
71
- "lowercase": false
72
  },
73
  "pre_tokenizer": {
74
  "type": "BertPreTokenizer"
 
68
  "clean_text": true,
69
  "handle_chinese_chars": true,
70
  "strip_accents": null,
71
+ "lowercase": true
72
  },
73
  "pre_tokenizer": {
74
  "type": "BertPreTokenizer"
tokenizer_config.json CHANGED
@@ -1,55 +1,55 @@
1
- {
2
- "added_tokens_decoder": {
3
- "0": {
4
- "content": "[PAD]",
5
- "lstrip": false,
6
- "normalized": false,
7
- "rstrip": false,
8
- "single_word": false,
9
- "special": true
10
- },
11
- "100": {
12
- "content": "[UNK]",
13
- "lstrip": false,
14
- "normalized": false,
15
- "rstrip": false,
16
- "single_word": false,
17
- "special": true
18
- },
19
- "101": {
20
- "content": "[CLS]",
21
- "lstrip": false,
22
- "normalized": false,
23
- "rstrip": false,
24
- "single_word": false,
25
- "special": true
26
- },
27
- "102": {
28
- "content": "[SEP]",
29
- "lstrip": false,
30
- "normalized": false,
31
- "rstrip": false,
32
- "single_word": false,
33
- "special": true
34
- },
35
- "103": {
36
- "content": "[MASK]",
37
- "lstrip": false,
38
- "normalized": false,
39
- "rstrip": false,
40
- "single_word": false,
41
- "special": true
42
- }
43
- },
44
- "clean_up_tokenization_spaces": false,
45
- "cls_token": "[CLS]",
46
- "do_lower_case": false,
47
- "mask_token": "[MASK]",
48
- "model_max_length": 512,
49
- "pad_token": "[PAD]",
50
- "sep_token": "[SEP]",
51
- "strip_accents": null,
52
- "tokenize_chinese_chars": true,
53
- "tokenizer_class": "BertTokenizer",
54
- "unk_token": "[UNK]"
55
- }
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 1000000000000000019884624838656,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:432f6d678a01e6c33291130434141d8ce6ba5c0200247b9af24a2c57e22dfb28
3
- size 4795
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2be9122db2f3ce57bcd972d8e64985a7f8de4d203061a177c354ec30aaf3cac
3
+ size 5304