PassbyGrocer commited on
Commit
2a7ddaa
·
verified ·
1 Parent(s): d8dbdf1

End of training

Browse files
README.md ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: hfl/chinese-roberta-wwm-ext-large
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: robert_bilstm_mega_res-ner-msra-ner-ner-msra-ner
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # robert_bilstm_mega_res-ner-msra-ner-ner-msra-ner
21
+
22
+ This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large) on an unknown dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.0621
25
+ - Precision: 0.9538
26
+ - Recall: 0.9573
27
+ - F1: 0.9555
28
+ - Accuracy: 0.9940
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 5e-05
48
+ - train_batch_size: 64
49
+ - eval_batch_size: 64
50
+ - seed: 42
51
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 100
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.0239 | 1.0 | 725 | 0.0232 | 0.9242 | 0.9344 | 0.9293 | 0.9931 |
60
+ | 0.0139 | 2.0 | 1450 | 0.0254 | 0.9373 | 0.9459 | 0.9416 | 0.9925 |
61
+ | 0.006 | 3.0 | 2175 | 0.0294 | 0.9415 | 0.9480 | 0.9448 | 0.9930 |
62
+ | 0.0052 | 4.0 | 2900 | 0.0303 | 0.9389 | 0.9486 | 0.9437 | 0.9937 |
63
+ | 0.0049 | 5.0 | 3625 | 0.0303 | 0.9422 | 0.9498 | 0.9459 | 0.9933 |
64
+ | 0.0034 | 6.0 | 4350 | 0.0353 | 0.9411 | 0.9594 | 0.9502 | 0.9934 |
65
+ | 0.0015 | 7.0 | 5075 | 0.0372 | 0.9404 | 0.9498 | 0.9450 | 0.9927 |
66
+ | 0.0013 | 8.0 | 5800 | 0.0379 | 0.9477 | 0.9492 | 0.9485 | 0.9938 |
67
+ | 0.0006 | 9.0 | 6525 | 0.0405 | 0.9516 | 0.9502 | 0.9509 | 0.9937 |
68
+ | 0.0039 | 10.0 | 7250 | 0.0442 | 0.9420 | 0.9536 | 0.9478 | 0.9931 |
69
+ | 0.0013 | 11.0 | 7975 | 0.0393 | 0.9479 | 0.9528 | 0.9504 | 0.9936 |
70
+ | 0.001 | 12.0 | 8700 | 0.0431 | 0.9455 | 0.9513 | 0.9484 | 0.9933 |
71
+ | 0.0011 | 13.0 | 9425 | 0.0431 | 0.9487 | 0.9425 | 0.9455 | 0.9936 |
72
+ | 0.0003 | 14.0 | 10150 | 0.0425 | 0.9392 | 0.9450 | 0.9421 | 0.9933 |
73
+ | 0.0001 | 15.0 | 10875 | 0.0456 | 0.9475 | 0.9515 | 0.9495 | 0.9937 |
74
+ | 0.0011 | 16.0 | 11600 | 0.0446 | 0.9467 | 0.9471 | 0.9469 | 0.9928 |
75
+ | 0.0002 | 17.0 | 12325 | 0.0500 | 0.9532 | 0.9457 | 0.9495 | 0.9933 |
76
+ | 0.0001 | 18.0 | 13050 | 0.0504 | 0.9479 | 0.9490 | 0.9485 | 0.9929 |
77
+ | 0.0002 | 19.0 | 13775 | 0.0455 | 0.9463 | 0.9527 | 0.9495 | 0.9933 |
78
+ | 0.0013 | 20.0 | 14500 | 0.0471 | 0.9487 | 0.9544 | 0.9515 | 0.9933 |
79
+ | 0.0005 | 21.0 | 15225 | 0.0425 | 0.9491 | 0.9584 | 0.9537 | 0.9936 |
80
+ | 0.0009 | 22.0 | 15950 | 0.0503 | 0.9455 | 0.9555 | 0.9505 | 0.9931 |
81
+ | 0.0003 | 23.0 | 16675 | 0.0474 | 0.9530 | 0.9555 | 0.9543 | 0.9938 |
82
+ | 0.0006 | 24.0 | 17400 | 0.0481 | 0.9531 | 0.9538 | 0.9534 | 0.9937 |
83
+ | 0.0013 | 25.0 | 18125 | 0.0502 | 0.9467 | 0.9534 | 0.9500 | 0.9934 |
84
+ | 0.0001 | 26.0 | 18850 | 0.0517 | 0.9461 | 0.9492 | 0.9476 | 0.9933 |
85
+ | 0.0001 | 27.0 | 19575 | 0.0410 | 0.9536 | 0.9530 | 0.9533 | 0.9937 |
86
+ | 0.0011 | 28.0 | 20300 | 0.0453 | 0.9520 | 0.9498 | 0.9509 | 0.9937 |
87
+ | 0.0007 | 29.0 | 21025 | 0.0444 | 0.9479 | 0.9480 | 0.9479 | 0.9935 |
88
+ | 0.0 | 30.0 | 21750 | 0.0498 | 0.9529 | 0.9498 | 0.9513 | 0.9937 |
89
+ | 0.0001 | 31.0 | 22475 | 0.0490 | 0.9514 | 0.9496 | 0.9505 | 0.9935 |
90
+ | 0.001 | 32.0 | 23200 | 0.0499 | 0.9495 | 0.9486 | 0.9491 | 0.9934 |
91
+ | 0.0001 | 33.0 | 23925 | 0.0451 | 0.9499 | 0.9557 | 0.9528 | 0.9939 |
92
+ | 0.0002 | 34.0 | 24650 | 0.0469 | 0.9486 | 0.9563 | 0.9525 | 0.9937 |
93
+ | 0.0001 | 35.0 | 25375 | 0.0505 | 0.9568 | 0.9496 | 0.9532 | 0.9938 |
94
+ | 0.0003 | 36.0 | 26100 | 0.0491 | 0.9593 | 0.9525 | 0.9559 | 0.9942 |
95
+ | 0.0005 | 37.0 | 26825 | 0.0432 | 0.9551 | 0.9532 | 0.9542 | 0.9939 |
96
+ | 0.0003 | 38.0 | 27550 | 0.0465 | 0.9536 | 0.9486 | 0.9511 | 0.9937 |
97
+ | 0.0019 | 39.0 | 28275 | 0.0491 | 0.9574 | 0.9469 | 0.9521 | 0.9937 |
98
+ | 0.0 | 40.0 | 29000 | 0.0470 | 0.9582 | 0.9534 | 0.9558 | 0.9940 |
99
+ | 0.0008 | 41.0 | 29725 | 0.0477 | 0.9505 | 0.9538 | 0.9522 | 0.9937 |
100
+ | 0.0 | 42.0 | 30450 | 0.0544 | 0.9500 | 0.9542 | 0.9521 | 0.9937 |
101
+ | 0.0002 | 43.0 | 31175 | 0.0527 | 0.9571 | 0.9492 | 0.9531 | 0.9938 |
102
+ | 0.0005 | 44.0 | 31900 | 0.0510 | 0.9574 | 0.9513 | 0.9543 | 0.9939 |
103
+ | 0.0006 | 45.0 | 32625 | 0.0478 | 0.9527 | 0.9536 | 0.9532 | 0.9938 |
104
+ | 0.0001 | 46.0 | 33350 | 0.0464 | 0.9559 | 0.9517 | 0.9538 | 0.9937 |
105
+ | 0.0001 | 47.0 | 34075 | 0.0478 | 0.9578 | 0.9530 | 0.9554 | 0.9939 |
106
+ | 0.0 | 48.0 | 34800 | 0.0507 | 0.9574 | 0.9515 | 0.9544 | 0.9940 |
107
+ | 0.0 | 49.0 | 35525 | 0.0534 | 0.9531 | 0.9534 | 0.9532 | 0.9939 |
108
+ | 0.0004 | 50.0 | 36250 | 0.0512 | 0.9541 | 0.9530 | 0.9536 | 0.9941 |
109
+ | 0.0001 | 51.0 | 36975 | 0.0478 | 0.9549 | 0.9532 | 0.9541 | 0.9940 |
110
+ | 0.0001 | 52.0 | 37700 | 0.0446 | 0.9541 | 0.9555 | 0.9548 | 0.9942 |
111
+ | 0.0 | 53.0 | 38425 | 0.0522 | 0.9529 | 0.9509 | 0.9519 | 0.9935 |
112
+ | 0.0001 | 54.0 | 39150 | 0.0507 | 0.9552 | 0.9525 | 0.9538 | 0.9937 |
113
+ | 0.0003 | 55.0 | 39875 | 0.0493 | 0.9466 | 0.9484 | 0.9475 | 0.9930 |
114
+ | 0.0 | 56.0 | 40600 | 0.0496 | 0.9507 | 0.9496 | 0.9501 | 0.9934 |
115
+ | 0.0 | 57.0 | 41325 | 0.0502 | 0.9512 | 0.9559 | 0.9535 | 0.9940 |
116
+ | 0.0 | 58.0 | 42050 | 0.0528 | 0.9465 | 0.9525 | 0.9494 | 0.9932 |
117
+ | 0.0 | 59.0 | 42775 | 0.0578 | 0.9480 | 0.9503 | 0.9492 | 0.9931 |
118
+ | 0.0 | 60.0 | 43500 | 0.0557 | 0.9506 | 0.9486 | 0.9496 | 0.9935 |
119
+ | 0.0 | 61.0 | 44225 | 0.0487 | 0.9539 | 0.9521 | 0.9530 | 0.9936 |
120
+ | 0.0 | 62.0 | 44950 | 0.0519 | 0.9534 | 0.9536 | 0.9535 | 0.9938 |
121
+ | 0.0 | 63.0 | 45675 | 0.0532 | 0.9531 | 0.9554 | 0.9542 | 0.9939 |
122
+ | 0.0 | 64.0 | 46400 | 0.0572 | 0.9534 | 0.9527 | 0.9530 | 0.9938 |
123
+ | 0.0001 | 65.0 | 47125 | 0.0563 | 0.9550 | 0.9527 | 0.9538 | 0.9940 |
124
+ | 0.0 | 66.0 | 47850 | 0.0550 | 0.9568 | 0.9507 | 0.9538 | 0.9940 |
125
+ | 0.0 | 67.0 | 48575 | 0.0585 | 0.9480 | 0.9542 | 0.9511 | 0.9935 |
126
+ | 0.0003 | 68.0 | 49300 | 0.0607 | 0.9501 | 0.9496 | 0.9499 | 0.9936 |
127
+ | 0.0 | 69.0 | 50025 | 0.0577 | 0.9529 | 0.9548 | 0.9539 | 0.9939 |
128
+ | 0.0 | 70.0 | 50750 | 0.0583 | 0.9541 | 0.9569 | 0.9555 | 0.9941 |
129
+ | 0.0001 | 71.0 | 51475 | 0.0549 | 0.9530 | 0.9486 | 0.9508 | 0.9938 |
130
+ | 0.0 | 72.0 | 52200 | 0.0592 | 0.9546 | 0.9509 | 0.9528 | 0.9937 |
131
+ | 0.0 | 73.0 | 52925 | 0.0598 | 0.9524 | 0.9502 | 0.9513 | 0.9936 |
132
+ | 0.0 | 74.0 | 53650 | 0.0583 | 0.9530 | 0.9517 | 0.9523 | 0.9937 |
133
+ | 0.0 | 75.0 | 54375 | 0.0602 | 0.9513 | 0.9513 | 0.9513 | 0.9936 |
134
+ | 0.0 | 76.0 | 55100 | 0.0624 | 0.9510 | 0.9527 | 0.9518 | 0.9934 |
135
+ | 0.0 | 77.0 | 55825 | 0.0622 | 0.9523 | 0.9527 | 0.9525 | 0.9935 |
136
+ | 0.0 | 78.0 | 56550 | 0.0599 | 0.9509 | 0.9536 | 0.9522 | 0.9938 |
137
+ | 0.0 | 79.0 | 57275 | 0.0599 | 0.9509 | 0.9550 | 0.9529 | 0.9937 |
138
+ | 0.0 | 80.0 | 58000 | 0.0588 | 0.9551 | 0.9536 | 0.9544 | 0.9939 |
139
+ | 0.0 | 81.0 | 58725 | 0.0581 | 0.9547 | 0.9561 | 0.9554 | 0.9941 |
140
+ | 0.0 | 82.0 | 59450 | 0.0587 | 0.9574 | 0.9567 | 0.9571 | 0.9940 |
141
+ | 0.0 | 83.0 | 60175 | 0.0592 | 0.9533 | 0.9582 | 0.9558 | 0.9940 |
142
+ | 0.0 | 84.0 | 60900 | 0.0602 | 0.9534 | 0.9569 | 0.9551 | 0.9939 |
143
+ | 0.0 | 85.0 | 61625 | 0.0601 | 0.9530 | 0.9554 | 0.9542 | 0.9938 |
144
+ | 0.0 | 86.0 | 62350 | 0.0608 | 0.9528 | 0.9561 | 0.9545 | 0.9939 |
145
+ | 0.0 | 87.0 | 63075 | 0.0606 | 0.9560 | 0.9538 | 0.9549 | 0.9939 |
146
+ | 0.0 | 88.0 | 63800 | 0.0590 | 0.9514 | 0.9575 | 0.9544 | 0.9940 |
147
+ | 0.0 | 89.0 | 64525 | 0.0611 | 0.9542 | 0.9577 | 0.9559 | 0.9940 |
148
+ | 0.0002 | 90.0 | 65250 | 0.0617 | 0.9563 | 0.9567 | 0.9565 | 0.9940 |
149
+ | 0.0 | 91.0 | 65975 | 0.0611 | 0.9578 | 0.9555 | 0.9566 | 0.9940 |
150
+ | 0.0004 | 92.0 | 66700 | 0.0628 | 0.9510 | 0.9567 | 0.9539 | 0.9939 |
151
+ | 0.0 | 93.0 | 67425 | 0.0634 | 0.9523 | 0.9561 | 0.9542 | 0.9939 |
152
+ | 0.0 | 94.0 | 68150 | 0.0629 | 0.9534 | 0.9571 | 0.9552 | 0.9940 |
153
+ | 0.0 | 95.0 | 68875 | 0.0627 | 0.9523 | 0.9565 | 0.9544 | 0.9940 |
154
+ | 0.0 | 96.0 | 69600 | 0.0627 | 0.9528 | 0.9565 | 0.9547 | 0.9940 |
155
+ | 0.0 | 97.0 | 70325 | 0.0625 | 0.9536 | 0.9565 | 0.9550 | 0.9940 |
156
+ | 0.0 | 98.0 | 71050 | 0.0620 | 0.9558 | 0.9561 | 0.9559 | 0.9941 |
157
+ | 0.0 | 99.0 | 71775 | 0.0620 | 0.9543 | 0.9573 | 0.9558 | 0.9940 |
158
+ | 0.0 | 100.0 | 72500 | 0.0621 | 0.9538 | 0.9573 | 0.9555 | 0.9940 |
159
+
160
+
161
+ ### Framework versions
162
+
163
+ - Transformers 4.47.1
164
+ - Pytorch 2.3.0+cu118
165
+ - Datasets 3.2.0
166
+ - Tokenizers 0.21.0
config.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "hfl/chinese-roberta-wwm-ext-large",
3
+ "architectures": [
4
+ "BertForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "directionality": "bidi",
10
+ "eos_token_id": 2,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 1024,
14
+ "id2label": {
15
+ "0": "O",
16
+ "1": "B-LOC",
17
+ "2": "I-LOC",
18
+ "3": "B-ORG",
19
+ "4": "I-ORG",
20
+ "5": "B-PER",
21
+ "6": "I-PER"
22
+ },
23
+ "initializer_range": 0.02,
24
+ "intermediate_size": 4096,
25
+ "label2id": {
26
+ "B-LOC": 1,
27
+ "B-ORG": 3,
28
+ "B-PER": 5,
29
+ "I-LOC": 2,
30
+ "I-ORG": 4,
31
+ "I-PER": 6,
32
+ "O": 0
33
+ },
34
+ "layer_norm_eps": 1e-12,
35
+ "max_position_embeddings": 512,
36
+ "model_type": "bert",
37
+ "num_attention_heads": 16,
38
+ "num_hidden_layers": 24,
39
+ "output_past": true,
40
+ "pad_token_id": 0,
41
+ "pooler_fc_size": 768,
42
+ "pooler_num_attention_heads": 12,
43
+ "pooler_num_fc_layers": 3,
44
+ "pooler_size_per_head": 128,
45
+ "pooler_type": "first_token_transform",
46
+ "position_embedding_type": "absolute",
47
+ "torch_dtype": "float32",
48
+ "transformers_version": "4.47.1",
49
+ "type_vocab_size": 2,
50
+ "use_cache": true,
51
+ "vocab_size": 21128
52
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6d2879e9bd64264f875df718c9d04392ef86c7fa55dd6ec427215377df5c371
3
+ size 1297966804
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 1000000000000000019884624838656,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "BertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8c2d8b4bfce2cf2ab40aef624974ebf9d9be61895bd5f8046a92dc64e6d7ca6
3
+ size 5368
vocab.txt ADDED
The diff for this file is too large to render. See raw diff