File size: 3,149 Bytes
84621f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311306e
84621f2
311306e
 
 
84621f2
311306e
 
 
84621f2
311306e
84621f2
311306e
84621f2
311306e
84621f2
311306e
 
 
84621f2
311306e
 
 
84621f2
311306e
84621f2
311306e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84621f2
311306e
84621f2
311306e
 
84621f2
311306e
 
 
84621f2
311306e
 
 
 
84621f2
311306e
84621f2
311306e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
library_name: transformers
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-en-fr
tags:
- translation
- generated_from_trainer
datasets:
- kde4
metrics:
- bleu
model-index:
- name: marian-finetuned-kde4-en-to-fr
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: kde4
      type: kde4
      config: en-fr
      split: train
      args: en-fr
    metrics:
    - name: Bleu
      type: bleu
      value: 50.54449537679619
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Marian Fine-Tuned KDE4 (English-to-French)

This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) using the KDE4 dataset. It achieves the following results on the evaluation set:
- **Loss**: 0.9620
- **BLEU**: 50.5445

---

## Model Description

This English-to-French translation model has been fine-tuned specifically on the KDE4 dataset. The base model, Helsinki-NLP/opus-mt-en-fr, is part of the MarianMT family, renowned for its efficiency and high-quality neural machine translation capabilities. 

---

## Intended Uses & Limitations

### Intended Uses
- Translating English text into French.
- High-quality translations in the context of software localization, especially related to KDE4.

### Limitations
- Performance may decline on texts outside the KDE4 domain.
- Struggles with idiomatic expressions, specialized technical jargon, or ambiguous content.

---

## Training & Evaluation Data

The model was fine-tuned on the KDE4 dataset, a specialized resource for machine translation in software localization. The evaluation metrics reflect the model's performance on this domain-specific data.

---

## Training Procedure

### Hyperparameters
- **Learning Rate**: 2e-05  
- **Train Batch Size**: 32  
- **Eval Batch Size**: 64  
- **Seed**: 42  
- **Optimizer**: AdamW with `betas=(0.9, 0.999)`, `epsilon=1e-08`  
- **LR Scheduler**: Linear  
- **Epochs**: 1  
- **Mixed Precision Training**: Native AMP  

### Results
- **Loss**: 0.9620  
- **BLEU**: 50.5445  

### Training Loss Progression

| Step  | Training Loss |
|-------|---------------|
| 500   | 1.2253        |
| 1000  | 1.2165        |
| 1500  | 1.1913        |
| 2000  | 1.1404        |
| 2500  | 1.1178        |
| 3000  | 1.0900        |
| 3500  | 1.0594        |
| 4000  | 1.0512        |
| 4500  | 1.0633        |
| 5000  | 1.0405        |
| 5500  | 1.0316        |

---

## Framework Versions
- **Transformers**: 4.47.1  
- **PyTorch**: 2.5.1+cu121  
- **Datasets**: 3.2.0  
- **Tokenizers**: 0.21.0  

---

## Example Usage

```python
from transformers import pipeline

# Load the model
model_checkpoint = "ParitKansal/marian-finetuned-kde4-en-to-fr"
translator = pipeline("translation", model=model_checkpoint)

# Translate text
translation = translator("Default to expanded threads")
print(translation)
```

This script demonstrates how to use the model for English-to-French translation tasks.

---