update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- te_dx_jp
|
7 |
+
model-index:
|
8 |
+
- name: t5-base-TEDxJP-7front-1body-7rear
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# t5-base-TEDxJP-7front-1body-7rear
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.4380
|
20 |
+
- Wer: 0.1697
|
21 |
+
- Mer: 0.1639
|
22 |
+
- Wil: 0.2501
|
23 |
+
- Wip: 0.7499
|
24 |
+
- Hits: 55904
|
25 |
+
- Substitutions: 6350
|
26 |
+
- Deletions: 2333
|
27 |
+
- Insertions: 2275
|
28 |
+
- Cer: 0.1321
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 0.0001
|
48 |
+
- train_batch_size: 32
|
49 |
+
- eval_batch_size: 32
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_ratio: 0.1
|
54 |
+
- num_epochs: 10
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer |
|
59 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:|
|
60 |
+
| 0.5926 | 1.0 | 1457 | 0.4717 | 0.2141 | 0.2008 | 0.2898 | 0.7102 | 55014 | 6714 | 2859 | 4253 | 0.1829 |
|
61 |
+
| 0.4821 | 2.0 | 2914 | 0.4178 | 0.1796 | 0.1733 | 0.2595 | 0.7405 | 55368 | 6348 | 2871 | 2384 | 0.1452 |
|
62 |
+
| 0.4444 | 3.0 | 4371 | 0.4103 | 0.1768 | 0.1700 | 0.2561 | 0.7439 | 55745 | 6359 | 2483 | 2577 | 0.1416 |
|
63 |
+
| 0.3824 | 4.0 | 5828 | 0.4145 | 0.1712 | 0.1653 | 0.2516 | 0.7484 | 55844 | 6362 | 2381 | 2314 | 0.1335 |
|
64 |
+
| 0.3481 | 5.0 | 7285 | 0.4133 | 0.1722 | 0.1659 | 0.2512 | 0.7488 | 55917 | 6283 | 2387 | 2449 | 0.1357 |
|
65 |
+
| 0.312 | 6.0 | 8742 | 0.4204 | 0.1719 | 0.1659 | 0.2516 | 0.7484 | 55845 | 6315 | 2427 | 2363 | 0.1360 |
|
66 |
+
| 0.3001 | 7.0 | 10199 | 0.4253 | 0.1684 | 0.1629 | 0.2486 | 0.7514 | 55908 | 6297 | 2382 | 2200 | 0.1312 |
|
67 |
+
| 0.3152 | 8.0 | 11656 | 0.4282 | 0.1689 | 0.1632 | 0.2491 | 0.7509 | 55909 | 6317 | 2361 | 2228 | 0.1322 |
|
68 |
+
| 0.2716 | 9.0 | 13113 | 0.4338 | 0.1694 | 0.1637 | 0.2497 | 0.7503 | 55865 | 6316 | 2406 | 2217 | 0.1321 |
|
69 |
+
| 0.2544 | 10.0 | 14570 | 0.4380 | 0.1697 | 0.1639 | 0.2501 | 0.7499 | 55904 | 6350 | 2333 | 2275 | 0.1321 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.21.2
|
75 |
+
- Pytorch 1.12.1+cu116
|
76 |
+
- Datasets 2.4.0
|
77 |
+
- Tokenizers 0.12.1
|