--- library_name: transformers license: apache-2.0 base_model: google/canine-s tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: canine-s-fine-tuned-hs-new results: [] --- # canine-s-fine-tuned-hs-new This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6932 - F1: 0.6252 - Roc Auc: 0.5003 - Accuracy: 0.0025 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.6935 | 1.0 | 2002 | 0.6934 | 0.5574 | 0.4996 | 0.0 | | 0.6933 | 2.0 | 4004 | 0.6932 | 0.6252 | 0.5003 | 0.0025 | | 0.6933 | 3.0 | 6006 | 0.6933 | 0.5949 | 0.4980 | 0.0005 | | 0.6933 | 4.0 | 8008 | 0.6932 | 0.5498 | 0.4977 | 0.0 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1