yuchenFan commited on
Commit
74ad90c
·
1 Parent(s): b7b4b4e

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +134 -149
README.md CHANGED
@@ -1,199 +1,184 @@
1
  ---
2
- library_name: transformers
3
- tags: []
4
  ---
 
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
- ### Recommendations
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
 
 
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
69
 
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
 
 
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
 
 
 
 
 
 
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
 
 
 
 
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
 
 
 
 
 
 
 
 
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
 
 
 
 
 
 
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
 
3
  ---
4
+ # EurusPRM-Stage2
5
 
6
+ ## Links
7
 
8
+ - 📜 [Blog]()
9
+ - 🤗 [PRIME Collection](https://huggingface.co/PRIME-RL)
10
+ - 🤗 [Training Data](https://huggingface.co/datasets/PRIME-RL/EurusPRM-Stage1-Data)
11
 
12
+ ## Introduction
13
 
14
+ EurusPRM-Stage1 is trained using **[Implicit PRM](https://arxiv.org/abs/2412.01981)**, which obtains free process rewards at no additional cost but just needs to simply train an ORM on the cheaper response-level labels. During inference, implicit process rewards are obtained by forward passing and calculating the log-likelihood ratio on each step. It serves a great fundation for further training of **[EurusPRM-Stage2](https://huggingface.co/PRIME-RL/EurusPRM-Stage2)**.
15
 
16
+ <img src="./figs/implicit.png" alt="prm" style="zoom: 33%;" />
17
 
18
+ The key ingredient of Implicit PRM is the reward representation, as demonstrated below:
19
 
20
+ <aside>
21
+
22
 
23
+ ***Proposition***: Consider an ORM where the reward is parameterized by the log-likelihood ratio of two causal LMs, i.e.
24
 
25
+ $$
26
+ r_\phi(\mathbf{y}) := \beta \log \frac{\pi_\phi(\mathbf{y})}{\pi_\text{ref}(\mathbf{y})}.
27
+ $$
 
 
 
 
28
 
29
+ Define
30
 
31
+ $$
32
+ q_\phi^t(\mathbf{y}_{<t}, y_t) := \sum_{i=1}^{t} \beta \log \frac{\pi_\phi(y_{i}|\mathbf{y}_{<i})}{\pi_\text{ref}(y_{i}|\mathbf{y}_{<i})}.
33
+ $$
34
 
35
+ is the exponential average of \\(r_\theta\\) at step \\(t\\).
 
 
36
 
37
+ $$
38
+ q_\phi^t(\mathbf{y}_{<t}, y_t) = \beta \log \mathbb{E}{\pi_\text{ref}(\mathbf{y}|\mathbf{y}_{\leq t})} \left[ e^{\frac{1}{\beta} r_\phi(\mathbf{y})} \right]
39
+ $$
40
 
41
+ Hence, \\(q_\theta^t\\)represents an exact expectation of outcome reward \\(r_\theta\\) at step \\(t\\), i.e., the Q value.
42
 
43
+ The proposition indicates that when modeling
44
 
45
+ $$
46
+ r_\phi(\mathbf{y}) := \beta \log \frac{\pi_\phi(\mathbf{y})}{\pi_\text{ref}(\mathbf{y})}
47
+ $$
48
 
49
+ to train an ORM with the standard pipeline, where \\(\beta\\) is a hyperparameter, \\(\phi\\) can implicitly learn a Q function. Hence, process reward \\(r_\phi^t\\) can be obtained by:
50
 
51
+ $$
52
+ r_\phi^t := q_\phi^t - q_\phi^{t-1} = \beta \log \frac{\pi_\phi(y_{t}|\mathbf{y}_{<t})}{\pi_\text{ref}(y_{t}|\mathbf{y}_{<t})}.
53
+ $$
54
 
55
+ Therefore, we can indeed obtain PRMs simply by collecting response-level data and training an ORM, without any burden of annotating step labels.
56
 
57
+ The proposition is **agnostic to specific choices of the training objective of ORMs**. It can be instantiated with different objectives as vanilla ORM training, with the only difference being substituting the \\(r_\phi \left( \mathbf{y} \right)\\) with \\(\beta \log \frac{\pi_\phi(\mathbf{y})}{\pi_\text{ref}(\mathbf{y})}\\).
58
 
59
+ For example, DPO already meets our assumption and serves as a strong variant, while in this work, we instantiate our implicit PRM with cross entropy (CE) loss due to memory efficiency:
60
 
61
+ $$
62
+ \small \mathcal{L}_{CE} = l \cdot \log \sigma \left( \beta \log \frac{\pi\phi(\mathbf{y})}{\pi_\text{ref}(\mathbf{y})} \right) + (1 - l) \cdot \log \left[ 1 - \sigma \left( \beta \log \frac{\pi_\phi(\mathbf{y})}{\pi_\text{ref}(\mathbf{y})} \right) \right]
63
+ $$
64
 
65
+ We applied the above \\(L_{CE}\\) to train implicit PRM. We used a learning rate of 5e-7 and a batch-size of 64 for training.
66
 
67
+ ## Usage
68
 
69
+ We show an example leveraging **EurusPRM-Stage2** below:
70
 
71
+ ```python
72
+ coef=0.001
73
+ d = {'query':'111','answer':['111','222']
74
+ }
75
+ model = AutoModelForCausalLM.from_pretrained('PRIME-RL/EurusPRM-Stage2')
76
+ tokenizer = AutoTokenizer.from_pretrained('PRIME-RL/EurusPRM-Stage2')
77
+ ref_model = AutoModelForCausalLM.from_pretrained('Qwen/Qwen2.5-Math-7B-Instruct')
78
+ input_ids = tokenizer.apply_chat_template([
79
+ {"role": "user", "content": d["query"]},
80
+ {"role": "assistant", "content": "\n\n".join(d["answer"])},
81
+ ], tokenize=True, add_generation_prompt=False)
82
+ attention_mask = input_ids!=tokenizer.pad_token_id
83
+ step_last_tokens = []
84
+ for step_num in range(0, len(d["answer"])+1):
85
+ conv = tokenizer.apply_chat_template([
86
+ {"role":"user", "content":d["query"]},
87
+ {"role":"assistant", "content":"\n\n".join(d["answer"][:step_num])},
88
+ ], tokenize=False, add_generation_prompt=False)
89
+ conv = conv.strip()
90
+ if step_num!=0 and step_num!=len(d['answer']):
91
+ conv+='\n\n'
92
+ currect_ids = tokenizer.encode(conv,add_special_tokens=False)
93
+ step_last_tokens.append(len(currect_ids) - 2)
94
 
95
+ inputs = {'input_ids':input_ids,'attention_mask':attention_mask,'labels':input_ids}
96
+ step_last_tokens = torch.tensor(step_last_tokens)
97
 
98
+ def get_logps(model,inputs):
99
+ logits = model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask']).logits
100
+ labels = inputs['labels'][:, 1:].clone().long()
101
+ logits = logits[:, :-1, :]
102
+ labels[labels == -100] = 0
103
+ per_token_logps = torch.gather(logits.log_softmax(-1), dim=2, index=labels.unsqueeze(2)).squeeze(2)
104
+ return per_token_logps
105
 
106
+ with torch.no_grad():
107
+ per_token_logps = get_logps(model, inputs)
108
+ per_token_logps = get_logps(ref_model,inputs)
109
 
110
+ raw_reward = per_token_logps - ref_per_token_logps
111
+ beta_reward = coef * raw_reward
112
+ beta_reward = beta_reward.cumsum(-1)
113
+ beta_reward = beta_reward.gather(dim=-1, index=step_last_tokens[1:])
114
+ print(beta_reward)
115
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
 
117
  ## Evaluation
118
 
119
+ ### Evaluation Base Model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
 
121
+ We adopt **Eurus-2-7B-SFT**, **Qwen2.5-7B-Instruct** and **Llama-3.1-70B-Instruct** as generation models to evaluate the performance of our implicit PRM. For all models, we set the sampling temperature as 0.5, *p* of the top-*p* sampling as 1.
122
 
123
+ ### Best-of-N Sampling
124
 
125
+ We use Best-of-64 as our evaluation metric. The weighting methods are different for several PRMs below.
126
 
127
+ - For [Skywork-o1-Open-PRM-Qwen-2.5-7B](https://huggingface.co/Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B), we use simple average reward across all steps.
128
+ - For EurusPRM-Stage 1, we use the minimum reward across all steps.
129
+ - For EurusPRM-Stage 2, we use the accumulative rewards.
130
 
131
+ **Eurus-2-7B-SFT**
132
 
133
+ | Method | Reward Model | MATH | AMC | AIME_2024 | OlympiadBench | Minerva Math | Avg |
134
+ | --- | --- | --- | --- | --- | --- | --- | --- |
135
+ | Greedy Pass @ 1 | N/A | 65.1 | 30.1 | 3.3 | 29.8 | 32.7 | 32.2 |
136
+ | Majority Voting @ 64 | N/A | 65.6 | 53.0 | 13.3 | 39.1 | 22.4 | 38.7 |
137
+ | Best-of-64 | Skywork-o1-Open-PRM-Qwen-2.5-7B | 47.2 | 45.8 | 10.0 | 32.3 | 16.2 | 30.3 |
138
+ | | EurusPRM-Stage 1 | 44.6 | 41.0 | 6.7 | 32.9 | 17.3 | 28.5 |
139
+ | Weighted Best-of-64 | Skywork-o1-Open-PRM-Qwen-2.5-7B | 64.6 | **55.4** | 13.3 | **41.3** | 23.2 | 39.6 |
140
+ | | EurusPRM-Stage 1 | **66.0** | 54.2 | **13.3** | 39.6 | **29.0** | **40.4** |
141
 
142
+ **Llama-3.1-70B-Instruct**
143
 
144
+ | Method | Reward Model | MATH | AMC | AIME 2024 | OlympiadBench | Minerva Math | Avg |
145
+ | --- | --- | --- | --- | --- | --- | --- | --- |
146
+ | Greedy Pass @ 1 | N/A | 62.1 | 37.3 | 16.7 | 27.7 | 34.2 | 35.6 |
147
+ | Majority Voting @ 64 | N/A | 80.2 | 53.0 | 26.7 | 40.4 | 38.6 | 47.8 |
148
+ | Best-of-N @ 64 | Skywork-o1-Open-PRM-Qwen-2.5-7B | 77.8 | 56.6 | 23.3 | 39.0 | 31.6 | 45.7 |
149
+ | | EurusPRM-Stage 1 | 77.8 | 44.6 | **26.7** | 35.3 | 41.5 | 45.2 |
150
+ | Weighted Best-of-64 | Skywork-o1-Open-PRM-Qwen-2.5-7B | **81.2** | **56.6** | 23.3 | **42.4** | 38.2 | 48.3 |
151
+ | | EurusPRM-Stage 1 | 80.4 | 53.0 | **26.7** | 40.9 | **46.7** | **49.5** |
152
 
153
+ **Qwen2.5-7B-Instruct**
154
 
155
+ | Method | Reward Model | MATH | AMC | AIME 2024 | OlympiadBench | Minerva Math | Avg |
156
+ | --- | --- | --- | --- | --- | --- | --- | --- |
157
+ | Greedy Pass @ 1 | N/A | 73.3 | 47.0 | 13.3 | 39.4 | 35.3 | 41.7 |
158
+ | Majority Voting @ 64 | N/A | 82.0 | 53.0 | 16.7 | 43.0 | 36.4 | 46.2 |
159
+ | Best-of-N @ 64 | Skywork-o1-Open-PRM-Qwen-2.5-7B | **85.2** | **60.2** | **20.0** | **44.7** | 32.7 | 48.6 |
160
+ | | EurusPRM-Stage 1 | 81.8 | 47.0 | 16.7 | 40.1 | 41.5 | 45.4 |
161
+ | | EurusPRM-Stage 2 | **86.0** | 59.0 | 16.7 | 41.4 | 41.5 | **48.9** |
162
+ | Weighted Best-of-64 | Skywork-o1-Open-PRM-Qwen-2.5-7B | 83.6 | 55.4 | 13.3 | 43.7 | 36.8 | 46.6 |
163
+ | | EurusPRM-Stage 1 | 82.6 | 53.0 | 16.7 | 42.7 | **45.2** | 48.0 |
164
 
 
165
 
 
166
 
167
+ ## Citation
168
 
169
+ ```latex
170
+ @misc{cui2024process,
171
+ title={Process Reinforcement through Implicit Rewards},
172
+ author={Ganqu Cui and Lifan Yuan and Zefan Wang and Hanbin Wang and Wendi Li and Bingxiang He and Yuchen Fan and Tianyu Yu and Qixin Xu and Weize Chen and Jiarui Yuan and Huayu Chen and Kaiyan Zhang and Xingtai Lv and Shuo Wang and Yuan Yao and Hao Peng and Yu Cheng and Zhiyuan Liu and Maosong Sun and Bowen Zhou and Ning Ding},
173
+ year={2025}
174
+ }
175
+ ```
176
 
177
+ ```latex
178
+ @article{yuan2024implicitprm,
179
+ title={Free Process Rewards without Process Labels},
180
+ author={Lifan Yuan and Wendi Li and Huayu Chen and Ganqu Cui and Ning Ding and Kaiyan Zhang and Bowen Zhou and Zhiyuan Liu and Hao Peng},
181
+ journal={arXiv preprint arXiv:2412.01981},
182
+ year={2024}
183
+ }
184
+ ```