Chancy commited on
Commit
d28d95e
·
verified ·
1 Parent(s): 28360bb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -1
README.md CHANGED
@@ -4,4 +4,66 @@ metrics:
4
  - accuracy
5
  base_model:
6
  - deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
7
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  - accuracy
5
  base_model:
6
  - deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
7
+ ---
8
+
9
+ <div align="center">
10
+ <h1> POLARIS </h1>
11
+ <div>
12
+ 🌠 A <strong>PO</strong>st-training recipe for scaling R<strong>L</strong> on <strong>A</strong>dvanced <strong>R</strong>eason<strong>I</strong>ng model<strong>S</strong> 🚀
13
+ </div>
14
+ </div>
15
+ <br>
16
+
17
+ <div align="center" style="line-height: 1;">
18
+ <a href="https://github.com/YourUsername/YourProject" style="margin: 2px;">
19
+ <img alt="Code" src="https://img.shields.io/badge/POLARIS-000000?style=for-the-badge&logo=github&logoColor=000&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
20
+ </a>
21
+ <a href="https://yourproject.blog" target="_blank" style="margin: 2px;">
22
+ <img alt="Blog" src="https://img.shields.io/badge/Notion-%23000000.svg?style=for-the-badge&logo=notion&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
23
+ </a>
24
+ <a href="https://twitter.com/YourUsername" style="margin: 2px;">
25
+ <img alt="Twitter" src="https://img.shields.io/badge/Twitter-white?style=for-the-badge&logo=twitter&logoColor=000&color=000&labelColor=white" style="display: inline-block; vertical-align: middle;"/>
26
+ </a>
27
+ <a href="" style="margin: 2px;">
28
+ <img alt="Paper" src="https://img.shields.io/badge/Paper-%23000000.svg?style=for-the-badge&logo=arxiv&logoColor=000&color=000&labelColor=white" style="display: inline-block; vertical-align: middle;"/>
29
+ </a>
30
+ </div>
31
+
32
+ ## Overview
33
+ Polaris is an open‐source post‐training method that applies reinforcement learning (RL) to scale up models that already exhibit strong reasoning abilities. Our approach demonstrates that even a 4B model (such as [Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B)) can achieve incredible improvements on complex reasoning tasks. In our experiments, Polaris-4B-Preview obtains remarkable results on challenging benchmarks, significantly outperforming several leading commercial systems like Claude‑4‑Opus and Grok‑3‑Beta.
34
+
35
+ ## Polaris's Recipe
36
+ - **Data Difficulty:** Before training, Polaris analyzes and maps the distribution of data difficulty. The dataset should not be overwhelmed by either overly difficult or trivially easy problems. We recommend using a data distribution with a slight bias toward challenging problems, which typically exhibits a mirrored J-shaped distribution.
37
+ - **Diversity-Based Rollout:** We leverage the *diversity among rollouts* to initialize the sampling temperature, which is then progressively increased throughout the RL training stages.
38
+ - **Inference-Time Length:** Polaris incorporates length extrapolation techniques for generating longer CoT at inference stage. This enables a *"train-short, generate-long"* paradigm for CoT reasoning, mitigating the computational burden of training with excessively long rollouts .
39
+ - **Exploration Efficiency:** Exploration efficiency in Polaris is enhanced through multi-stage training. However, reducing the model's response length in the first stage poses potential risks. A more conservative approach would be to directly allow the model to "think longer" from the beginning.
40
+
41
+ The details of our training recipe and analysis can be found in our [blog post]().
42
+ The code and data for reproducing our results can be found in our [github repo]().
43
+
44
+ ### Evaluation Results
45
+
46
+ | **Models** | **AIME24 avg@32** | **AIME25 avg@32** | **Minerva Math avg@4** | **Olympiad Bench avg@4** | **AMC23 avg@8** |
47
+ | --- | --- | --- | --- | --- | --- |
48
+ | `Deepseek-R1-Distill-Qwen-7B` | 55.0 | 39.7 | 36.7 | 56.8 | 81.9 |
49
+ | `AReal-boba-RL-7B` | 61.9 | 48.3 | 39.5 | 61.9 | 86.4 |
50
+ | `Skywork-OR1-7B-Math` | 69.8 | 52.3 | **40.8** | 63.2 | 85.3 |
51
+ | **`POLARIS-7B-Preview`** | **72.6** | **52.6** | 40.2 | **65.4** | **89.0** |
52
+ | `Deepseek-R1-Distill-Qwen-32B` | 72.6 | 54.9 | 42.1 | 59.4 | 84.3 |
53
+ | `qwen3-32B` | 81.4 | 72.9 | 44.2 | 66.7 | 92.4 |
54
+ | `qwen3-4B` | 73.8 | 65.6 | 43.6 | 62.2 | 87.2 |
55
+ | **`POLARIS-4B-Preview`** | **81.2** | **79.4** | **44.0** | **69.1** | **94.8** |
56
+
57
+ ## Acknowledgements
58
+ The training and evaluation codebase is heavily built on [Verl](https://github.com/volcengine/verl). The reward function in polaris in from [DeepScaleR](https://github.com/agentica-project/rllm). Our model is trained on top of [`Qwen3-4B`](https://huggingface.co/Qwen/Qwen3-4B) and [`DeepSeek-R1-Distill-Qwen-7B`](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B). Thanks for their wonderful work.
59
+
60
+
61
+ ## Citation
62
+ ```bibtex
63
+ @misc{Polaris2025,
64
+ title = {POLARIS: A Post-Training Recipe for Scaling Reinforcement Learning on Advanced Reasoning Models},
65
+ url = {https://hkunlp.github.io/blog/2025/Polaris},
66
+ author = {An, Chenxin and Xie, Zhihui and Li, Xiaonan and Li, Lei and Zhang, Jun and Gong, Shansan and Zhong, Ming and Xu, Jingjing and Qiu, Xipeng and Wang, Mingxuan and Kong, Lingpeng}
67
+ year = {2025}
68
+ }
69
+ ```