File size: 1,357 Bytes
8dda677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
library_name: lerobot
license: apache-2.0
pipeline_tag: robotics
tags:
- robotics
---

# Model Card for GR00T-N1-so100-wc

<!-- Provide a quick summary of what the model is/does. -->

This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).

---

## How to Get Started with the Model

For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
Below is the short version on how to train and run inference/eval:

### Train from scratch

```bash
python lerobot/scripts/train.py \
  --dataset.repo_id=<user_or_org>/<dataset> \
  --policy.type=act \
  --output_dir=outputs/train/<desired_policy_repo_id> \
  --job_name=lerobot_training \
  --policy.device=cuda \
  --policy.repo_id=<user_or_org>/<desired_policy_repo_id> \
  --wandb.enable=true
```

*Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`.*

### Evaluate the policy

```bash
python -m lerobot.record \
  --robot.type=so100_follower \
  --dataset.repo_id=<user_or_org>/eval_<dataset> \
  --policy.path=<user_or_org>/<desired_policy_repo_id> \
  --episodes=10
```

Prefix the dataset repo with **eval_** and supply `--policy.path` pointing to a local or hub checkpoint.

---