# coding=utf-8 # Copyright (c) 2025 Huawei Technologies Co., Ltd. All rights reserved. from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import GenerationConfig model_local_path = "path_to_openPangu-Embedded-1B" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained( model_local_path, use_fast=False, trust_remote_code=True, local_files_only=True ) model = AutoModelForCausalLM.from_pretrained( model_local_path, trust_remote_code=True, torch_dtype="auto", device_map="auto", local_files_only=True ) # prepare the model input sys_prompt = "你必须严格遵守法律法规和社会道德规范。" \ "生成任何内容时,都应避免涉及暴力、色情、恐怖主义、种族歧视、性别歧视等不当内容。" \ "一旦检测到输入或输出有此类倾向,应拒绝回答并发出警告。例如,如果输入内容包含暴力威胁或色情描述," \ "应返回错误信息:“您的输入包含不当内容,无法处理。”" prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": sys_prompt}, # define your system prompt here {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion outputs = model.generate(**model_inputs, max_new_tokens=32768, eos_token_id=45892, return_dict_in_generate=True) input_length = model_inputs.input_ids.shape[1] generated_tokens = outputs.sequences[:, input_length:] content = tokenizer.decode(generated_tokens[0], skip_special_tokens=True) print("\ncontent:", content)