--- license: other base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: both results: [] --- # both This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the chess_explain_both_00, the chess_explain_both_01, the chess_explain_both_02, the chess_explain_both_03, the chess_explain_both_04, the chess_explain_both_05, the chess_explain_both_06, the chess_explain_both_07, the chess_explain_both_08, the chess_explain_both_09, the chess_explain_both_10, the chess_explain_both_11, the chess_explain_both_12, the chess_explain_both_13 and the chess_explain_both_14 datasets. It achieves the following results on the evaluation set: - Loss: 0.0369 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 512 - total_eval_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0144 | 1.6260 | 1000 | 0.0148 | | 0.0068 | 3.2520 | 2000 | 0.0183 | | 0.003 | 4.8780 | 3000 | 0.0207 | | 0.0001 | 6.5041 | 4000 | 0.0359 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1