{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f96dfe9bd20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652909563.14693, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYCy73sIqg/9EsLvyyX1L7kht29xzwkvgAAAAAAAAAADYWkvbjWw7kKBym8obH+NLGnRDuDKm20AACAPwAAgD9a0cu9FAqCujrFNLhaMpEyyWt1u8r2TjcAAIA/AACAPwDmVb1c8wa6OXYMuxO+lrWD7A+6boMlOgAAgD8AAIA/wHgBPvTomT+uVgc/j0wKv9Pl/j0FeKM+AAAAAAAAAACNVKo9FLCruqXHDLvyU2S2f6SVOp0rIDoAAIA/AACAP0A+zz32LF660AMevK8IqTZqRCu3ixYZtgAAgD8AAIA/JrUevh+0uLvSg9i7HDicuZFBJj2dMs86AACAPwAAgD8AwLI5HuREPzY9qL3VgrW++shJvV2Sdb0AAAAAAAAAAM0W/TwUupi6JuQiOTVmbTSDTeU6AcU6uAAAgD8AAIA/ECp2vu+HOz6wzIM7z7o4vkrrW73kaC2+AAAAAAAAAADmX/k9j6sVO1uqu70RWhy+Cj7xvCvZkDwAAAAAAAAAADObbL2PRku626SoOwzY2DloN0Q51XBEugAAgD8AAIA/MyJOPlFbWT+iSgE+Z9npvlDKbT4GGlS+AAAAAAAAAABKG3O+9vwIPV3ufDpALl+5UR6bvj48ybkAAIA/AACAPwDk37yPih+6iqsaugegNDZwwiy7JgAyOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqb2ItuMlY0CUhpRSlIwBbJRN6AOMAXSUR0CGOp0QK8cudX2UKGgGaAloD0MITKd1G1TEYECUhpRSlGgVTegDaBZHQIZHMDyOJch1fZQoaAZoCWgPQwj5823BUvRjQJSGlFKUaBVN6ANoFkdAhkf23KB/Z3V9lChoBmgJaA9DCLD+z2G+TCFAlIaUUpRoFUvvaBZHQIZMRLbpNbl1fZQoaAZoCWgPQwiJz51gf5RiQJSGlFKUaBVN6ANoFkdAhlpgEt/WlXV9lChoBmgJaA9DCOllFMstGV9AlIaUUpRoFU3oA2gWR0CGYS8wpON6dX2UKGgGaAloD0MILgCN0qUKWUCUhpRSlGgVTegDaBZHQIacPww0wal1fZQoaAZoCWgPQwj/rs+cdYplQJSGlFKUaBVN6ANoFkdAhqXY8uBczXV9lChoBmgJaA9DCLx5qkNuWWFAlIaUUpRoFU3oA2gWR0CGphnvlU6xdX2UKGgGaAloD0MI2xSPi+r5YkCUhpRSlGgVTegDaBZHQIapyRhc7hh1fZQoaAZoCWgPQwi+2ebGdExhQJSGlFKUaBVN6ANoFkdAhrGYb83uNXV9lChoBmgJaA9DCCBe1y/YT2BAlIaUUpRoFU3oA2gWR0CGwAgwoLG8dX2UKGgGaAloD0MIwcjLmlivV0CUhpRSlGgVTegDaBZHQIbF4WepXIV1fZQoaAZoCWgPQwgoSddMPjpjQJSGlFKUaBVN6ANoFkdAhsmksSTQmnV9lChoBmgJaA9DCCLElbP3LWNAlIaUUpRoFU3oA2gWR0CGztd0q6OHdX2UKGgGaAloD0MIO+XRjTAaYUCUhpRSlGgVTegDaBZHQIbP33nIQvp1fZQoaAZoCWgPQwgykj1CTYhiQJSGlFKUaBVN6ANoFkdAhtL2iL2pQ3V9lChoBmgJaA9DCEut9xvt919AlIaUUpRoFU3oA2gWR0CG3xsWweNldX2UKGgGaAloD0MInaG4481PaECUhpRSlGgVTegDaBZHQIbf2+TNdJJ1fZQoaAZoCWgPQwhsdqT6TlZiQJSGlFKUaBVN6ANoFkdAhuQavq1PWXV9lChoBmgJaA9DCL/S+fAsAQNAlIaUUpRoFUvvaBZHQIbn3o5ggHN1fZQoaAZoCWgPQwgjhEcbRww/QJSGlFKUaBVL4GgWR0CG6jFwT/Q0dX2UKGgGaAloD0MIR+NQvwvMY0CUhpRSlGgVTegDaBZHQIbwwVj7Q9l1fZQoaAZoCWgPQwj/BYIAGZIqwJSGlFKUaBVL02gWR0CG9ddVNpM6dX2UKGgGaAloD0MIPkFiu/tBYkCUhpRSlGgVTegDaBZHQIb2y5Xlr/N1fZQoaAZoCWgPQwikb9I0KBxjQJSGlFKUaBVN6ANoFkdAhzAG8ujASHV9lChoBmgJaA9DCO8AT1q4hClAlIaUUpRoFUvwaBZHQIc1rtG/etV1fZQoaAZoCWgPQwixNVt5yW5fQJSGlFKUaBVN6ANoFkdAhzm1TJhfB3V9lChoBmgJaA9DCE1KQbcXC2JAlIaUUpRoFU3oA2gWR0CHOfcafjCIdX2UKGgGaAloD0MIj9/b9GcaWkCUhpRSlGgVTegDaBZHQIc9qL4vexh1fZQoaAZoCWgPQwi9VkJ3SfxeQJSGlFKUaBVN6ANoFkdAh0UHh0hePnV9lChoBmgJaA9DCMLDtG/uR2JAlIaUUpRoFU3oA2gWR0CHVD58jRlZdX2UKGgGaAloD0MInE1HADfKX0CUhpRSlGgVTegDaBZHQIdaub1AZ891fZQoaAZoCWgPQwiIug9A6mthQJSGlFKUaBVN6ANoFkdAh178xCY1HnV9lChoBmgJaA9DCET3rGu0SEFAlIaUUpRoFUv5aBZHQIdj23Sa3JB1fZQoaAZoCWgPQwiGOxdGek9YQJSGlFKUaBVN6ANoFkdAh2XLn1WbPXV9lChoBmgJaA9DCPIJ2XkbvUVAlIaUUpRoFUvkaBZHQId3LWK/Efl1fZQoaAZoCWgPQwho6nWLwGtkQJSGlFKUaBVN6ANoFkdAh3gLn9vS+nV9lChoBmgJaA9DCES+S6lL32JAlIaUUpRoFU3oA2gWR0CHfcrMC9ytdX2UKGgGaAloD0MI9kArMGQZX0CUhpRSlGgVTegDaBZHQIeCKWZ7Xxx1fZQoaAZoCWgPQwj5vOKpR2plQJSGlFKUaBVN6ANoFkdAh4TSOzY29HV9lChoBmgJaA9DCMFwrmGGtF9AlIaUUpRoFU3oA2gWR0CHi+o8ZDRddX2UKGgGaAloD0MIJ/Vlaac2NMCUhpRSlGgVS8RoFkdAh434IBzV+nV9lChoBmgJaA9DCEJ5H0dzMWVAlIaUUpRoFU3oA2gWR0CHkac7QswtdX2UKGgGaAloD0MIk6tY/Kb6S0CUhpRSlGgVS/9oFkdAh5R/FrEcbXV9lChoBmgJaA9DCGK85lWdE0BAlIaUUpRoFUvjaBZHQIeWckWykbh1fZQoaAZoCWgPQwiH3uLhPdVoQJSGlFKUaBVNIgJoFkdAh51d7OVxCXV9lChoBmgJaA9DCFG8ytqmkCFAlIaUUpRoFUvfaBZHQIekeS+xnnN1fZQoaAZoCWgPQwjWjXdHRjliQJSGlFKUaBVN6ANoFkdAh6SZvUBnz3V9lChoBmgJaA9DCCxjQzf7EV9AlIaUUpRoFU3oA2gWR0CHzZYGt6omdX2UKGgGaAloD0MIGXRC6CCGZECUhpRSlGgVTegDaBZHQIfQoYaYNRZ1fZQoaAZoCWgPQwgxem6hq/tjQJSGlFKUaBVN6ANoFkdAh9DVCPZIx3V9lChoBmgJaA9DCFvQe2OIK2VAlIaUUpRoFU3oA2gWR0CH08zEaVD8dX2UKGgGaAloD0MIHuIftvQgJsCUhpRSlGgVS+VoFkdAh+AyBshxHXV9lChoBmgJaA9DCDtVvmekJmNAlIaUUpRoFU3oA2gWR0CH6R0aIeo2dX2UKGgGaAloD0MIjuVd9QArYkCUhpRSlGgVTegDaBZHQIf5l2TxG2F1fZQoaAZoCWgPQwiO5V31gINgQJSGlFKUaBVN6ANoFkdAh/vM4cWCVnV9lChoBmgJaA9DCB5tHLEWSGBAlIaUUpRoFU3oA2gWR0CIHk+jdpIudX2UKGgGaAloD0MIkSi0rPsHXECUhpRSlGgVTegDaBZHQIgiKd6LOzJ1fZQoaAZoCWgPQwiMoDGTKEBhQJSGlFKUaBVN6ANoFkdAiCxCgK4QSXV9lChoBmgJaA9DCE2+2ebGGGFAlIaUUpRoFU3oA2gWR0CINIL4vexfdX2UKGgGaAloD0MIPe5brRPYYECUhpRSlGgVTegDaBZHQIg4k/+sHSp1fZQoaAZoCWgPQwgF/YUesfJgQJSGlFKUaBVN6ANoFkdAiDs3Ov+wT3V9lChoBmgJaA9DCLLYJhWNiGBAlIaUUpRoFU3oA2gWR0CIRE1kUbkwdX2UKGgGaAloD0MI7X+AteoNYECUhpRSlGgVTegDaBZHQIhNe2VmjCZ1fZQoaAZoCWgPQwgi4Xt/A1liQJSGlFKUaBVN6ANoFkdAiFNgrxy4nXV9lChoBmgJaA9DCLhbkgN28GBAlIaUUpRoFU3oA2gWR0CIe1bKRuCPdX2UKGgGaAloD0MIiWLyBpiOY0CUhpRSlGgVTegDaBZHQIh7lkjHGS91fZQoaAZoCWgPQwh7wDxkymVeQJSGlFKUaBVN6ANoFkdAiH9DlHSWq3V9lChoBmgJaA9DCA3gLZCgyF9AlIaUUpRoFU3oA2gWR0CIjH+az/p/dX2UKGgGaAloD0MIIPDAAMKzY0CUhpRSlGgVTegDaBZHQIiVOKoAGSp1fZQoaAZoCWgPQwjgS+FBsztgQJSGlFKUaBVN6ANoFkdAiKRL9l2/z3V9lChoBmgJaA9DCEkT7wBPfFxAlIaUUpRoFU3oA2gWR0CIpluF6AvtdX2UKGgGaAloD0MI34yar5KuX0CUhpRSlGgVTegDaBZHQIjFY0O3DvV1fZQoaAZoCWgPQwgeFf93xBpjQJSGlFKUaBVN6ANoFkdAiMiPovBacXV9lChoBmgJaA9DCBeCHJQwQmJAlIaUUpRoFU3oA2gWR0CI0NuBtk4FdX2UKGgGaAloD0MI+3lTkQq/X0CUhpRSlGgVTegDaBZHQIjYNGiHqNZ1fZQoaAZoCWgPQwitaHOc205hQJSGlFKUaBVN6ANoFkdAiNvi/oJRfnV9lChoBmgJaA9DCJOrWPwmFGVAlIaUUpRoFU3oA2gWR0CI3kgTyrggdX2UKGgGaAloD0MIe4fboWFtZkCUhpRSlGgVTegDaBZHQIjm31xsEaF1fZQoaAZoCWgPQwjy0k1iEENgQJSGlFKUaBVN6ANoFkdAiO+nXd0q6XV9lChoBmgJaA9DCD51rFJ6oGNAlIaUUpRoFU3oA2gWR0CI9POKO1fFdX2UKGgGaAloD0MI8zy4O2t6XUCUhpRSlGgVTegDaBZHQIkc1wkxASp1fZQoaAZoCWgPQwgZcJaSZRtjQJSGlFKUaBVN6ANoFkdAiR0RBVuJlHV9lChoBmgJaA9DCD4kfO/v0GBAlIaUUpRoFU3oA2gWR0CJIJ+xW1c/dX2UKGgGaAloD0MIHCWvzjHgKsCUhpRSlGgVTREBaBZHQIkhKsp5NXZ1fZQoaAZoCWgPQwjAdjBin+hgQJSGlFKUaBVN6ANoFkdAiS3RRuTA33V9lChoBmgJaA9DCKbuyi4YVmNAlIaUUpRoFU3oA2gWR0CJNkSf16E8dX2UKGgGaAloD0MI4A8//73ZZECUhpRSlGgVTegDaBZHQIlFOX9itq51fZQoaAZoCWgPQwgId2ftNpxjQJSGlFKUaBVN6ANoFkdAiUc74i5d4XV9lChoBmgJaA9DCJeQD3q2tGBAlIaUUpRoFU3oA2gWR0CJZhwHZ9NOdX2UKGgGaAloD0MI32qduBy4YkCUhpRSlGgVTegDaBZHQIlpFkjHGS91fZQoaAZoCWgPQwiiRbbzfdxhQJSGlFKUaBVN6ANoFkdAiXDHWjGkvnV9lChoBmgJaA9DCIOieQALGWFAlIaUUpRoFU3oA2gWR0CJdy41gpjMdX2UKGgGaAloD0MInx7bMmCPYECUhpRSlGgVTegDaBZHQIl8pb+tKZl1fZQoaAZoCWgPQwh07KAS111mQJSGlFKUaBVN6ANoFkdAiYSYM4LkS3V9lChoBmgJaA9DCHP1Y5N892JAlIaUUpRoFU3oA2gWR0CJjKnm7rcCdX2UKGgGaAloD0MIe4UF9wPZY0CUhpRSlGgVTegDaBZHQImSAMfA9FF1fZQoaAZoCWgPQwjQmbSputBeQJSGlFKUaBVN6ANoFkdAiZYKraM72nV9lChoBmgJaA9DCHYb1H7rT2NAlIaUUpRoFU3oA2gWR0CJlkoBq9GrdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}