File size: 6,603 Bytes
033e60e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
#include <vector>
#include <cmath>
#include <iostream>
#include <string>
#include <ctime>
#include <cmath>
#include <tapa.h>
#include <gflags/gflags.h>
#include <ap_int.h>
constexpr int D = 1024;
constexpr int D_ffn = 5504;
constexpr int N_head = 16;
constexpr int MAX_SEQ_LEN = 1024;
constexpr int NUM_SLR = 3;
constexpr int NUM_DUM_SLR = 4;
constexpr int D_head = D / N_head;
constexpr int FFN_WEIGHT_SIZE = D * D_ffn;
constexpr int OUT_WEIGHT_SIZE = D * D;
constexpr int QKV_WEIGHT_SIZE = D * D / N_head * NUM_DUM_SLR * 2; // multi-head attention
using std::vector;
using int_v16 = tapa::vec_t<int, 16>;
using int4_v128 = tapa::vec_t<ap_int<4>, 128>;
using int8_v64 = tapa::vec_t<ap_int<8>, 64>;
void opt_kernel(
const int L,
const int L_out,
const int seq_len,
// tapa::mmap<int> inst, // inst[0] = L, inst[1] = reload_weight
tapa::mmap<ap_uint<512>> X_acc0,
tapa::mmap<ap_uint<512>> X_acc1,
tapa::mmap<ap_uint<512>> W_acc0,
tapa::mmap<ap_uint<512>> W_acc1,
tapa::mmap<ap_uint<128>> acc0_out,
// tapa::mmap<ap_uint<64>> acc1_out,
tapa::mmap<int> cycle_count
);
template <typename T>
using aligned_vector = std::vector<T, tapa::aligned_allocator<T>>;
DEFINE_string(bitstream, "", "path to bitstream file");
int main(int argc, char *argv[]){
gflags::ParseCommandLineFlags(&argc, &argv, true);
const int L = argc > 1 ? atoll(argv[1]) : MAX_SEQ_LEN;
srand((unsigned)time(nullptr));
// data preparation
aligned_vector<int> inst = {L, 1};
aligned_vector<ap_int<8>> X_acc0(L * D, 0);
aligned_vector<ap_int<8>> X_acc1(L * D, 0);
aligned_vector<ap_int<8>> W_acc0(D * D_head * NUM_DUM_SLR * 10 + D * D_ffn, 0);
aligned_vector<ap_int<8>> W_acc1(D * D_head * NUM_DUM_SLR * 10 + D * D_ffn, 0);
aligned_vector<ap_uint<128>> acc0_out(NUM_SLR * L * D / 8);
// aligned_vector<ap_uint<512>> acc0_out(NUM_SLR, aligned_vector<ap_uint<512>>(L * L / 16));
aligned_vector<ap_uint<64>> acc1_out(NUM_SLR * L * D / 8);
aligned_vector<int> cycle_count(1);
vector<int> X_copy(L * D);
vector<vector<int>> W_acc0_split(NUM_DUM_SLR, vector<int>(D * D_head * 8));
vector<vector<int>> W_acc1_split(NUM_DUM_SLR, vector<int>(D * D_head * 8));
vector<vector<int>> W_k_split(NUM_DUM_SLR, vector<int>(D * D_head * 8));
vector<aligned_vector<int>> q_golden(NUM_DUM_SLR, aligned_vector<int>(L * D_head));
vector<aligned_vector<int>> k_golden(NUM_DUM_SLR, aligned_vector<int>(L * D_head));
vector<aligned_vector<int>> attn_golden(NUM_DUM_SLR, aligned_vector<int>(L * L));
vector<aligned_vector<int>> acc1_out_golden(NUM_DUM_SLR, aligned_vector<int>(L * D_head));
// for(int i = 0; i < L * D; i++){
// int val = (rand() % 8) + 1;
// ap_int<32> full = tapa::bit_cast<ap_int<32>>(val);
// X_copy[i] = val;
// X_acc0[i] = ap_int<8>(full(7, 0));
// X_acc1[i] = ap_int<8>(full(7, 0));
// }
// for(int i = 0; i < D * D_head * NUM_DUM_SLR * 4; i++){
// int val = (rand() % 6) - 1;
// ap_int<32> full = tapa::bit_cast<ap_int<32>>(val);
// W_acc0[i/2]((i%2+1)*4-1, (i%2)*4) = ap_int<4>(full(3, 0));
// W_acc0_split[(i / 32) % 4][(i / 128) * 32 + (i % 32)] = val;
// }
// for(int i = 0; i < D * D_head * NUM_DUM_SLR * 4; i++){
// int val = (rand() % 6) - 1;
// ap_int<32> full = tapa::bit_cast<ap_int<32>>(val);
// W_acc1[i/2]((i%2+1)*4-1, (i%2)*4) = ap_int<4>(full(3, 0));
// W_acc1_split[(i / 32) % 4][(i / 128) * 32 + (i % 32)] = val;
// }
// for(int i = D * D_head * NUM_DUM_SLR * 4; i < D * D_head * NUM_DUM_SLR * 12; i++){
// int val = (rand() % 6) - 1;
// int ind = i - D * D_head * NUM_DUM_SLR * 4;
// ap_int<32> full = tapa::bit_cast<ap_int<32>>(val);
// W_acc0[i/2]((i%2+1)*4-1, (i%2)*4) = ap_int<4>(full(3, 0));
// W_acc1[i/2]((i%2+1)*4-1, (i%2)*4) = ap_int<4>(full(3, 0));
// W_k_split[(ind / 32) % 4][(ind / 128) * 32 + (ind % 32)] = val;
// }
// // cpu
// for(int i = 0; i < NUM_SLR; i++){
// // WqX
// for(int j = 0; j < L; j++){
// for(int k = 0; k < D_head; k++){
// int acc = 0;
// for(int l = 0; l < D; l++){
// acc += X_copy[j*D+l] * W_acc0_split[i][l*D_head + k];
// }
// q_golden[i][j * D_head + k] = std::min(std::max((acc >> 8), -128), 127);
// }
// }
// //WvX
// for(int j = 0; j < L; j++){
// for(int k = 0; k < D_head; k++){
// int acc = 0;
// for(int l = 0; l < D; l++){
// acc += X_copy[j*D+l] * W_acc1_split[i][l*D_head + k];
// }
// acc1_out_golden[i][j * D_head + k] = std::min(std::max((acc >> 8), -128), 127);
// }
// }
// //WkX
// for(int j = 0; j < L; j++){
// for(int k = 0; k < D_head; k++){
// int acc = 0;
// for(int l = 0; l < D; l++){
// acc += X_copy[j*D+l] * W_k_split[i][l*D_head + k];
// }
// k_golden[i][j * D_head + k] = std::min(std::max((acc >> 8), -128), 127);
// }
// }
// // QK^T
// for(int j = 0; j < L; j++){
// for(int k = 0; k < L; k++){
// int acc = 0;
// for(int l = 0; l < D_head; l++){
// acc += q_golden[i][k*D_head+l] * k_golden[i][j*D_head+l];
// }
// attn_golden[i][j*D_head+k] = acc;
// }
// }
// }
// invoke the kernel
int64_t kernel_time_ns = 0;
for(int i = 0; i < 24; i++){
kernel_time_ns += tapa::invoke(opt_kernel, FLAGS_bitstream,
L * D, L * D / 16, L,
// tapa::read_only_mmap<int>(inst),
tapa::read_only_mmap<ap_int<8>>(X_acc0).reinterpret<ap_uint<512>>(),
tapa::read_only_mmap<ap_int<8>>(X_acc1).reinterpret<ap_uint<512>>(),
tapa::read_only_mmap<ap_int<8>>(W_acc0).reinterpret<ap_uint<512>>(),
tapa::read_only_mmap<ap_int<8>>(W_acc1).reinterpret<ap_uint<512>>(),
tapa::write_only_mmap<ap_uint<128>>(acc0_out),
// tapa::write_only_mmap<ap_uint<64>>(acc1_out),
tapa::write_only_mmap<int>(cycle_count));
}
std::clog << "cycle time: " << cycle_count[0] << std::endl;
std::clog << "kernel time: " << kernel_time_ns * 1e-9 << " s" << std::endl;
}
|