File size: 6,603 Bytes
033e60e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#include <vector>
#include <cmath>
#include <iostream>
#include <string>
#include <ctime>
#include <cmath>
#include <tapa.h>
#include <gflags/gflags.h>
#include <ap_int.h>

constexpr int D = 1024;
constexpr int D_ffn = 5504;
constexpr int N_head = 16;
constexpr int MAX_SEQ_LEN = 1024;
constexpr int NUM_SLR = 3;
constexpr int NUM_DUM_SLR = 4;
constexpr int D_head = D / N_head;
constexpr int FFN_WEIGHT_SIZE = D * D_ffn;
constexpr int OUT_WEIGHT_SIZE = D * D;
constexpr int QKV_WEIGHT_SIZE = D * D / N_head * NUM_DUM_SLR * 2; // multi-head attention

using std::vector;
using int_v16 = tapa::vec_t<int, 16>;
using int4_v128 = tapa::vec_t<ap_int<4>, 128>;
using int8_v64 = tapa::vec_t<ap_int<8>, 64>;

void opt_kernel(
    const int L,
    const int L_out,
    const int seq_len,
    // tapa::mmap<int> inst, // inst[0] = L, inst[1] = reload_weight
    tapa::mmap<ap_uint<512>> X_acc0,
    tapa::mmap<ap_uint<512>> X_acc1,
    tapa::mmap<ap_uint<512>> W_acc0,
    tapa::mmap<ap_uint<512>> W_acc1,
    tapa::mmap<ap_uint<128>> acc0_out,
    // tapa::mmap<ap_uint<64>> acc1_out,
    tapa::mmap<int> cycle_count
);

template <typename T>
using aligned_vector = std::vector<T, tapa::aligned_allocator<T>>;

DEFINE_string(bitstream, "", "path to bitstream file");

int main(int argc, char *argv[]){
    gflags::ParseCommandLineFlags(&argc, &argv, true);

    const int L = argc > 1 ? atoll(argv[1]) : MAX_SEQ_LEN;

    srand((unsigned)time(nullptr));

    // data preparation
    aligned_vector<int> inst = {L, 1};
    aligned_vector<ap_int<8>> X_acc0(L * D, 0);
    aligned_vector<ap_int<8>> X_acc1(L * D, 0);
    aligned_vector<ap_int<8>> W_acc0(D * D_head * NUM_DUM_SLR * 10 + D * D_ffn, 0);
    aligned_vector<ap_int<8>> W_acc1(D * D_head * NUM_DUM_SLR * 10 + D * D_ffn, 0);
    aligned_vector<ap_uint<128>> acc0_out(NUM_SLR * L * D / 8);
    // aligned_vector<ap_uint<512>> acc0_out(NUM_SLR, aligned_vector<ap_uint<512>>(L * L / 16));
    aligned_vector<ap_uint<64>> acc1_out(NUM_SLR * L * D / 8);
    aligned_vector<int> cycle_count(1);


    vector<int> X_copy(L * D);
    vector<vector<int>> W_acc0_split(NUM_DUM_SLR, vector<int>(D * D_head * 8));
    vector<vector<int>> W_acc1_split(NUM_DUM_SLR, vector<int>(D * D_head * 8));
    vector<vector<int>> W_k_split(NUM_DUM_SLR, vector<int>(D * D_head * 8));
    vector<aligned_vector<int>> q_golden(NUM_DUM_SLR, aligned_vector<int>(L * D_head));
    vector<aligned_vector<int>> k_golden(NUM_DUM_SLR, aligned_vector<int>(L * D_head));
    vector<aligned_vector<int>> attn_golden(NUM_DUM_SLR, aligned_vector<int>(L * L));
    vector<aligned_vector<int>> acc1_out_golden(NUM_DUM_SLR, aligned_vector<int>(L * D_head));

    // for(int i = 0; i < L * D; i++){
    //     int val = (rand() % 8) + 1;
    //     ap_int<32> full = tapa::bit_cast<ap_int<32>>(val);
    //     X_copy[i] = val;
    //     X_acc0[i] = ap_int<8>(full(7, 0));
    //     X_acc1[i] = ap_int<8>(full(7, 0));
    // }

    // for(int i = 0; i < D * D_head * NUM_DUM_SLR * 4; i++){
    //     int val = (rand() % 6) - 1;
    //     ap_int<32> full = tapa::bit_cast<ap_int<32>>(val);
    //     W_acc0[i/2]((i%2+1)*4-1, (i%2)*4) = ap_int<4>(full(3, 0));
    //     W_acc0_split[(i / 32) % 4][(i / 128) * 32 + (i % 32)] = val;
    // }

    // for(int i = 0; i < D * D_head * NUM_DUM_SLR * 4; i++){
    //     int val = (rand() % 6) - 1;
    //     ap_int<32> full = tapa::bit_cast<ap_int<32>>(val);
    //     W_acc1[i/2]((i%2+1)*4-1, (i%2)*4) = ap_int<4>(full(3, 0));
    //     W_acc1_split[(i / 32) % 4][(i / 128) * 32 + (i % 32)] = val;
    // }

    // for(int i = D * D_head * NUM_DUM_SLR * 4; i < D * D_head * NUM_DUM_SLR * 12; i++){
    //     int val = (rand() % 6) - 1;
    //     int ind = i - D * D_head * NUM_DUM_SLR * 4;
    //     ap_int<32> full = tapa::bit_cast<ap_int<32>>(val);
    //     W_acc0[i/2]((i%2+1)*4-1, (i%2)*4) = ap_int<4>(full(3, 0));
    //     W_acc1[i/2]((i%2+1)*4-1, (i%2)*4) = ap_int<4>(full(3, 0));
    //     W_k_split[(ind / 32) % 4][(ind / 128) * 32 + (ind % 32)] = val;
    // }

    // // cpu 
    // for(int i = 0; i < NUM_SLR; i++){
    //     // WqX
    //     for(int j = 0; j < L; j++){
    //         for(int k = 0; k < D_head; k++){
    //             int acc = 0;
    //             for(int l = 0; l < D; l++){
    //                 acc += X_copy[j*D+l] * W_acc0_split[i][l*D_head + k];
    //             }
    //             q_golden[i][j * D_head + k] = std::min(std::max((acc >> 8), -128), 127);
    //         }
    //     }

    //     //WvX
    //     for(int j = 0; j < L; j++){
    //         for(int k = 0; k < D_head; k++){
    //             int acc = 0;
    //             for(int l = 0; l < D; l++){
    //                 acc += X_copy[j*D+l] * W_acc1_split[i][l*D_head + k];
    //             }
    //             acc1_out_golden[i][j * D_head + k] = std::min(std::max((acc >> 8), -128), 127);
    //         }
    //     }

    //     //WkX
    //     for(int j = 0; j < L; j++){
    //         for(int k = 0; k < D_head; k++){
    //             int acc = 0;
    //             for(int l = 0; l < D; l++){
    //                 acc += X_copy[j*D+l] * W_k_split[i][l*D_head + k];
    //             }
    //             k_golden[i][j * D_head + k] = std::min(std::max((acc >> 8), -128), 127);
    //         }
    //     }

    //     // QK^T
    //     for(int j = 0; j < L; j++){
    //         for(int k = 0; k < L; k++){
    //             int acc = 0;
    //             for(int l = 0; l < D_head; l++){
    //                 acc += q_golden[i][k*D_head+l] * k_golden[i][j*D_head+l];
    //             }
    //             attn_golden[i][j*D_head+k] = acc;
    //         }
    //     }
    // }


    // invoke the kernel
    int64_t kernel_time_ns = 0;
    for(int i = 0; i < 24; i++){
        kernel_time_ns += tapa::invoke(opt_kernel, FLAGS_bitstream,
            L * D, L * D / 16, L,
            // tapa::read_only_mmap<int>(inst), 
            tapa::read_only_mmap<ap_int<8>>(X_acc0).reinterpret<ap_uint<512>>(), 
            tapa::read_only_mmap<ap_int<8>>(X_acc1).reinterpret<ap_uint<512>>(), 
            tapa::read_only_mmap<ap_int<8>>(W_acc0).reinterpret<ap_uint<512>>(), 
            tapa::read_only_mmap<ap_int<8>>(W_acc1).reinterpret<ap_uint<512>>(), 
            tapa::write_only_mmap<ap_uint<128>>(acc0_out), 
            // tapa::write_only_mmap<ap_uint<64>>(acc1_out), 
            tapa::write_only_mmap<int>(cycle_count));
    }
    
    std::clog << "cycle time: " << cycle_count[0] << std::endl;
    std::clog << "kernel time: " << kernel_time_ns * 1e-9 << " s" << std::endl;
        
}