ai-team-ori
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,10 +1,14 @@
|
|
1 |
---
|
2 |
-
language:
|
3 |
- en
|
|
|
4 |
tags:
|
5 |
- audio
|
6 |
- automatic-speech-recognition
|
7 |
- whisper-event
|
|
|
|
|
|
|
8 |
model-index:
|
9 |
- name: Whisper-Hindi2Hinglish-Prime
|
10 |
results:
|
@@ -45,38 +49,41 @@ model-index:
|
|
45 |
value: 60.8224
|
46 |
name: WER
|
47 |
widget:
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
example_title: Speech Example 5
|
77 |
-
|
78 |
pipeline_tag: automatic-speech-recognition
|
79 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
80 |
---
|
81 |
|
82 |
## Whisper-Hindi2Hinglish-Prime:
|
@@ -219,7 +226,7 @@ from collections import OrderedDict
|
|
219 |
import json
|
220 |
|
221 |
# Load parameter name mapping from HF to OpenAI format
|
222 |
-
with open('convert_hf2openai.json
|
223 |
reverse_translation = json.load(f)
|
224 |
|
225 |
reverse_translation = OrderedDict(reverse_translation)
|
@@ -272,7 +279,7 @@ model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
|
272 |
|
273 |
# Convert and save model
|
274 |
model_save_path = "Whisper-Hindi2Hinglish-Prime.pt"
|
275 |
-
save_model(model_save_path)
|
276 |
```
|
277 |
|
278 |
- Transcribe
|
@@ -287,4 +294,4 @@ print(result["text"])
|
|
287 |
|
288 |
|
289 |
### Miscellaneous
|
290 |
-
This model is from a family of transformers-based ASR models trained by Oriserve. To compare this model against other models from the same family or other SOTA models please head to our [Speech-To-Text Arena](https://huggingface.co/spaces/Oriserve/ASR_arena). To learn more about our other models, and other queries regarding AI voice agents you can reach out to us at our email [
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
- en
|
4 |
+
- hi
|
5 |
tags:
|
6 |
- audio
|
7 |
- automatic-speech-recognition
|
8 |
- whisper-event
|
9 |
+
- pytorch
|
10 |
+
- hinglish
|
11 |
+
inference: true
|
12 |
model-index:
|
13 |
- name: Whisper-Hindi2Hinglish-Prime
|
14 |
results:
|
|
|
49 |
value: 60.8224
|
50 |
name: WER
|
51 |
widget:
|
52 |
+
- src: audios/c0637211-7384-4abc-af69-5aacf7549824_1_2629072_2656224.wav
|
53 |
+
output:
|
54 |
+
text: Mehnat to poora karte hain.
|
55 |
+
- src: audios/c0faba11-27ba-4837-a2eb-ccd67be07f40_1_3185088_3227568.wav
|
56 |
+
output:
|
57 |
+
text: Haan vahi ek aapko bataaya na.
|
58 |
+
- src: audios/663eb653-d6b5-4fda-b5f2-9ef98adc0a61_0_1098400_1118688.wav
|
59 |
+
output:
|
60 |
+
text: Aap pandrah log hain.
|
61 |
+
- src: audios/f5e0178c-354c-40c9-b3a7-687c86240a77_1_2613728_2630112.wav
|
62 |
+
output:
|
63 |
+
text: Kitne saal ki?
|
64 |
+
- src: audios/f5e0178c-354c-40c9-b3a7-687c86240a77_1_1152496_1175488.wav
|
65 |
+
output:
|
66 |
+
text: Lander cycle chaahie.
|
67 |
+
- src: audios/c0637211-7384-4abc-af69-5aacf7549824_1_2417088_2444224.wav
|
68 |
+
output:
|
69 |
+
text: Haan haan, dekhe hain.
|
70 |
+
- src: audios/common_voice_hi_23796065.mp3
|
71 |
+
example_title: Speech Example 1
|
72 |
+
- src: audios/common_voice_hi_41666099.mp3
|
73 |
+
example_title: Speech Example 2
|
74 |
+
- src: audios/common_voice_hi_41429198.mp3
|
75 |
+
example_title: Speech Example 3
|
76 |
+
- src: audios/common_voice_hi_41429259.mp3
|
77 |
+
example_title: Speech Example 4
|
78 |
+
- src: audios/common_voice_hi_40904697.mp3
|
79 |
+
example_title: Speech Example 5
|
|
|
|
|
80 |
pipeline_tag: automatic-speech-recognition
|
81 |
license: apache-2.0
|
82 |
+
metrics:
|
83 |
+
- wer
|
84 |
+
base_model:
|
85 |
+
- openai/whisper-large-v3
|
86 |
+
library_name: transformers
|
87 |
---
|
88 |
|
89 |
## Whisper-Hindi2Hinglish-Prime:
|
|
|
226 |
import json
|
227 |
|
228 |
# Load parameter name mapping from HF to OpenAI format
|
229 |
+
with open('convert_hf2openai.json', 'r') as f:
|
230 |
reverse_translation = json.load(f)
|
231 |
|
232 |
reverse_translation = OrderedDict(reverse_translation)
|
|
|
279 |
|
280 |
# Convert and save model
|
281 |
model_save_path = "Whisper-Hindi2Hinglish-Prime.pt"
|
282 |
+
save_model(model,model_save_path)
|
283 |
```
|
284 |
|
285 |
- Transcribe
|
|
|
294 |
|
295 |
|
296 |
### Miscellaneous
|
297 |
+
This model is from a family of transformers-based ASR models trained by Oriserve. To compare this model against other models from the same family or other SOTA models please head to our [Speech-To-Text Arena](https://huggingface.co/spaces/Oriserve/ASR_arena). To learn more about our other models, and other queries regarding AI voice agents you can reach out to us at our email [[email protected]]([email protected])
|