lbourdois commited on
Commit
66c95fe
·
verified ·
1 Parent(s): 4daa1b7

Improve language tag

Browse files

Hi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.

Files changed (1) hide show
  1. README.md +119 -106
README.md CHANGED
@@ -1,106 +1,119 @@
1
- ---
2
- license: apache-2.0
3
- license_link: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct/blob/main/LICENSE
4
- base_model:
5
- - Qwen/Qwen2.5-7B-Instruct
6
- base_model_relation: quantized
7
-
8
- ---
9
- # Qwen2.5-7B-Instruct-int8-ov
10
- * Model creator: [Qwen](https://huggingface.co/Qwen)
11
- * Original model: [Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct)
12
-
13
- ## Description
14
- This is [Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf).
15
-
16
- ## Quantization Parameters
17
-
18
- Weight compression was performed using `nncf.compress_weights` with the following parameters:
19
-
20
- * mode: **INT8_ASYM**
21
-
22
- For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2025/openvino-workflow/model-optimization-guide/weight-compression.html).
23
-
24
- ## Compatibility
25
-
26
- The provided OpenVINO™ IR model is compatible with:
27
-
28
- * OpenVINO version 2025.1.0 and higher
29
- * Optimum Intel 1.24.0 and higher
30
-
31
- ## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
32
-
33
- 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
34
-
35
- ```
36
- pip install optimum[openvino]
37
- ```
38
-
39
- 2. Run model inference:
40
-
41
- ```
42
- from transformers import AutoTokenizer
43
- from optimum.intel.openvino import OVModelForCausalLM
44
-
45
- model_id = "OpenVINO/qwen2.5-7b-instruct-int8-ov"
46
- tokenizer = AutoTokenizer.from_pretrained(model_id)
47
- model = OVModelForCausalLM.from_pretrained(model_id)
48
-
49
- inputs = tokenizer("What is OpenVINO?", return_tensors="pt")
50
-
51
- outputs = model.generate(**inputs, max_length=200)
52
- text = tokenizer.batch_decode(outputs)[0]
53
- print(text)
54
- ```
55
-
56
- For more examples and possible optimizations, refer to the [Inference with Optimum Intel](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-optimum-intel.html).
57
-
58
- ## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)
59
-
60
-
61
- 1. Install packages required for using OpenVINO GenAI.
62
- ```
63
- pip install openvino-genai huggingface_hub
64
- ```
65
-
66
- 2. Download model from HuggingFace Hub
67
-
68
- ```
69
- import huggingface_hub as hf_hub
70
-
71
- model_id = "OpenVINO/qwen2.5-7b-instruct-int8-ov"
72
- model_path = "qwen2.5-7b-instruct-int8-ov"
73
-
74
- hf_hub.snapshot_download(model_id, local_dir=model_path)
75
-
76
- ```
77
-
78
- 3. Run model inference:
79
-
80
- ```
81
- import openvino_genai as ov_genai
82
-
83
- device = "CPU"
84
- pipe = ov_genai.LLMPipeline(model_path, device)
85
- print(pipe.generate("What is OpenVINO?", max_length=200))
86
- ```
87
-
88
- More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)
89
-
90
- You can find more detaild usage examples in OpenVINO Notebooks:
91
-
92
- - [LLM](https://openvinotoolkit.github.io/openvino_notebooks/?search=LLM)
93
- - [RAG text generation](https://openvinotoolkit.github.io/openvino_notebooks/?search=RAG+system&tasks=Text+Generation)
94
- - [Convert models from ModelScope to OpenVINO](https://openvinotoolkit.github.io/openvino_notebooks/?search=Convert+models+from+ModelScope+to+OpenVINO)
95
-
96
- ## Limitations
97
-
98
- Check the original [model card](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) for limitations.
99
-
100
- ## Legal information
101
-
102
- The original model is distributed under [Apache License Version 2.0](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct/blob/main/LICENSE) license. More details can be found in [Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct).
103
-
104
- ## Disclaimer
105
-
106
- Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ license_link: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct/blob/main/LICENSE
4
+ base_model:
5
+ - Qwen/Qwen2.5-7B-Instruct
6
+ base_model_relation: quantized
7
+ language:
8
+ - zho
9
+ - eng
10
+ - fra
11
+ - spa
12
+ - por
13
+ - deu
14
+ - ita
15
+ - rus
16
+ - jpn
17
+ - kor
18
+ - vie
19
+ - tha
20
+ - ara
21
+ ---
22
+ # Qwen2.5-7B-Instruct-int8-ov
23
+ * Model creator: [Qwen](https://huggingface.co/Qwen)
24
+ * Original model: [Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct)
25
+
26
+ ## Description
27
+ This is [Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf).
28
+
29
+ ## Quantization Parameters
30
+
31
+ Weight compression was performed using `nncf.compress_weights` with the following parameters:
32
+
33
+ * mode: **INT8_ASYM**
34
+
35
+ For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2025/openvino-workflow/model-optimization-guide/weight-compression.html).
36
+
37
+ ## Compatibility
38
+
39
+ The provided OpenVINO™ IR model is compatible with:
40
+
41
+ * OpenVINO version 2025.1.0 and higher
42
+ * Optimum Intel 1.24.0 and higher
43
+
44
+ ## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
45
+
46
+ 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
47
+
48
+ ```
49
+ pip install optimum[openvino]
50
+ ```
51
+
52
+ 2. Run model inference:
53
+
54
+ ```
55
+ from transformers import AutoTokenizer
56
+ from optimum.intel.openvino import OVModelForCausalLM
57
+
58
+ model_id = "OpenVINO/qwen2.5-7b-instruct-int8-ov"
59
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
60
+ model = OVModelForCausalLM.from_pretrained(model_id)
61
+
62
+ inputs = tokenizer("What is OpenVINO?", return_tensors="pt")
63
+
64
+ outputs = model.generate(**inputs, max_length=200)
65
+ text = tokenizer.batch_decode(outputs)[0]
66
+ print(text)
67
+ ```
68
+
69
+ For more examples and possible optimizations, refer to the [Inference with Optimum Intel](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-optimum-intel.html).
70
+
71
+ ## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)
72
+
73
+
74
+ 1. Install packages required for using OpenVINO GenAI.
75
+ ```
76
+ pip install openvino-genai huggingface_hub
77
+ ```
78
+
79
+ 2. Download model from HuggingFace Hub
80
+
81
+ ```
82
+ import huggingface_hub as hf_hub
83
+
84
+ model_id = "OpenVINO/qwen2.5-7b-instruct-int8-ov"
85
+ model_path = "qwen2.5-7b-instruct-int8-ov"
86
+
87
+ hf_hub.snapshot_download(model_id, local_dir=model_path)
88
+
89
+ ```
90
+
91
+ 3. Run model inference:
92
+
93
+ ```
94
+ import openvino_genai as ov_genai
95
+
96
+ device = "CPU"
97
+ pipe = ov_genai.LLMPipeline(model_path, device)
98
+ print(pipe.generate("What is OpenVINO?", max_length=200))
99
+ ```
100
+
101
+ More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)
102
+
103
+ You can find more detaild usage examples in OpenVINO Notebooks:
104
+
105
+ - [LLM](https://openvinotoolkit.github.io/openvino_notebooks/?search=LLM)
106
+ - [RAG text generation](https://openvinotoolkit.github.io/openvino_notebooks/?search=RAG+system&tasks=Text+Generation)
107
+ - [Convert models from ModelScope to OpenVINO](https://openvinotoolkit.github.io/openvino_notebooks/?search=Convert+models+from+ModelScope+to+OpenVINO)
108
+
109
+ ## Limitations
110
+
111
+ Check the original [model card](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) for limitations.
112
+
113
+ ## Legal information
114
+
115
+ The original model is distributed under [Apache License Version 2.0](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct/blob/main/LICENSE) license. More details can be found in [Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct).
116
+
117
+ ## Disclaimer
118
+
119
+ Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.