OpenNLPLab
commited on
Commit
•
c9ee288
1
Parent(s):
e0b72b3
Publish code
Browse files- config.json +29 -0
- configuration_hgrn.py +60 -0
- generation_config.json +6 -0
- hgrn.png +0 -0
- merges.txt +0 -0
- modeling_hgrn.py +563 -0
- norm.py +15 -0
- special_tokens_map.json +23 -0
- tokenizer_config.json +33 -0
- utils.py +122 -0
- vocab.json +0 -0
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"act_fun": "silu",
|
3 |
+
"add_bos_token": false,
|
4 |
+
"architectures": [
|
5 |
+
"HgrnForCausalLM"
|
6 |
+
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_hgrn.HgrnConfig",
|
9 |
+
"AutoModelForCausalLM": "modeling_hgrn.HgrnForCausalLM"
|
10 |
+
},
|
11 |
+
"bias": false,
|
12 |
+
"bos_token_id": 50260,
|
13 |
+
"causal": true,
|
14 |
+
"decoder_embed_dim": 1024,
|
15 |
+
"decoder_layers": 22,
|
16 |
+
"eos_token_id": 50260,
|
17 |
+
"glu_act": "swish",
|
18 |
+
"glu_dim": 2048,
|
19 |
+
"init_std": 0.02,
|
20 |
+
"model_type": "hgrn",
|
21 |
+
"no_scale_embedding": false,
|
22 |
+
"norm_type": "layernorm",
|
23 |
+
"pad_token_id": null,
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.31.0",
|
26 |
+
"use_cache": true,
|
27 |
+
"use_triton": false,
|
28 |
+
"vocab_size": 50272
|
29 |
+
}
|
configuration_hgrn.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
""" Hgrn configuration"""
|
3 |
+
|
4 |
+
from transformers.configuration_utils import PretrainedConfig
|
5 |
+
from transformers.utils import logging
|
6 |
+
|
7 |
+
|
8 |
+
logger = logging.get_logger(__name__)
|
9 |
+
|
10 |
+
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
11 |
+
|
12 |
+
|
13 |
+
class HgrnConfig(PretrainedConfig):
|
14 |
+
model_type = "hgrn"
|
15 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
16 |
+
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
pad_token_id=1,
|
20 |
+
bos_token_id=0,
|
21 |
+
eos_token_id=2,
|
22 |
+
vocab_size=50272,
|
23 |
+
use_cache=True,
|
24 |
+
init_std=0.02,
|
25 |
+
# model config
|
26 |
+
decoder_embed_dim=1024,
|
27 |
+
decoder_layers=24,
|
28 |
+
add_bos_token=False,
|
29 |
+
act_fun="swish",
|
30 |
+
causal=True,
|
31 |
+
use_triton=False,
|
32 |
+
glu_act="swish",
|
33 |
+
glu_dim=2816,
|
34 |
+
bias=False,
|
35 |
+
norm_type="layernorm",
|
36 |
+
no_scale_embedding=False,
|
37 |
+
**kwargs,
|
38 |
+
):
|
39 |
+
super().__init__(
|
40 |
+
pad_token_id=pad_token_id,
|
41 |
+
bos_token_id=bos_token_id,
|
42 |
+
eos_token_id=eos_token_id,
|
43 |
+
**kwargs,
|
44 |
+
)
|
45 |
+
# hf origin
|
46 |
+
self.vocab_size = vocab_size
|
47 |
+
self.use_cache = use_cache
|
48 |
+
self.init_std = init_std
|
49 |
+
# add
|
50 |
+
self.decoder_embed_dim = decoder_embed_dim
|
51 |
+
self.decoder_layers = decoder_layers
|
52 |
+
self.add_bos_token = add_bos_token
|
53 |
+
self.act_fun = act_fun
|
54 |
+
self.causal = causal
|
55 |
+
self.use_triton = use_triton
|
56 |
+
self.glu_act = glu_act
|
57 |
+
self.glu_dim = glu_dim
|
58 |
+
self.bias = bias
|
59 |
+
self.norm_type = norm_type
|
60 |
+
self.no_scale_embedding = no_scale_embedding
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 50260,
|
4 |
+
"eos_token_id": 50260,
|
5 |
+
"transformers_version": "4.31.0"
|
6 |
+
}
|
hgrn.png
ADDED
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_hgrn.py
ADDED
@@ -0,0 +1,563 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
""" PyTorch Hgrn model."""
|
3 |
+
import math
|
4 |
+
from typing import List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.utils.checkpoint
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
10 |
+
from dataclasses import dataclass
|
11 |
+
import torch.nn.functional as F
|
12 |
+
|
13 |
+
from transformers.activations import ACT2FN
|
14 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
15 |
+
from transformers.modeling_utils import PreTrainedModel
|
16 |
+
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
17 |
+
from transformers.utils import ModelOutput
|
18 |
+
|
19 |
+
from .configuration_hgrn import HgrnConfig
|
20 |
+
from .utils import print_module, get_activation_fn, get_norm_fn, print_params, logging_info
|
21 |
+
from .norm import SimpleRMSNorm
|
22 |
+
from hgru import Hgru1d
|
23 |
+
|
24 |
+
from einops import rearrange
|
25 |
+
import numpy as np
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
_CONFIG_FOR_DOC = "HgrnConfig"
|
30 |
+
|
31 |
+
class GLU(nn.Module):
|
32 |
+
def __init__(self, d1, d2, act_fun, bias=False):
|
33 |
+
super().__init__()
|
34 |
+
# get local varables
|
35 |
+
params = locals()
|
36 |
+
# print params
|
37 |
+
print_params(**params)
|
38 |
+
|
39 |
+
self.l1 = nn.Linear(d1, d2, bias=bias)
|
40 |
+
self.l2 = nn.Linear(d1, d2, bias=bias)
|
41 |
+
self.l3 = nn.Linear(d2, d1, bias=bias)
|
42 |
+
self.act_fun = get_activation_fn(act_fun)
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
o1 = self.act_fun(self.l1(x))
|
46 |
+
o2 = self.l2(x)
|
47 |
+
output = o1 * o2
|
48 |
+
output = self.l3(output)
|
49 |
+
|
50 |
+
return output
|
51 |
+
|
52 |
+
class HgrnDecoderLayer(nn.Module):
|
53 |
+
def __init__(
|
54 |
+
self, config: HgrnConfig
|
55 |
+
):
|
56 |
+
super().__init__()
|
57 |
+
self.embed_dim = config.decoder_embed_dim
|
58 |
+
##### token mixer
|
59 |
+
self.token_mixer = Hgru1d(
|
60 |
+
self.embed_dim,
|
61 |
+
act_fun=config.act_fun,
|
62 |
+
causal=config.causal,
|
63 |
+
use_triton=config.use_triton,
|
64 |
+
bias=config.bias,
|
65 |
+
)
|
66 |
+
self.token_norm = get_norm_fn(config.norm_type)(self.embed_dim)
|
67 |
+
|
68 |
+
##### channel mixer
|
69 |
+
self.glu_act = config.glu_act
|
70 |
+
self.glu_dim = config.glu_dim
|
71 |
+
self.channel_mixer = GLU(self.embed_dim, self.glu_dim, self.glu_act, bias=config.bias)
|
72 |
+
self.channel_norm = get_norm_fn(config.norm_type)(self.embed_dim)
|
73 |
+
|
74 |
+
def forward(
|
75 |
+
self,
|
76 |
+
x,
|
77 |
+
padding_mask: Optional[torch.Tensor] = None,
|
78 |
+
lower_bound: Optional[torch.Tensor] = None,
|
79 |
+
):
|
80 |
+
# current does not support padding_mask!
|
81 |
+
x = self.token_mixer(self.token_norm(x), lower_bound) + x
|
82 |
+
x = self.channel_mixer(self.channel_norm(x)) + x
|
83 |
+
|
84 |
+
outputs = x
|
85 |
+
|
86 |
+
return outputs, None
|
87 |
+
|
88 |
+
HGRN_START_DOCSTRING = r"""
|
89 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
90 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
91 |
+
etc.)
|
92 |
+
|
93 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
94 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
95 |
+
and behavior.
|
96 |
+
|
97 |
+
Parameters:
|
98 |
+
config ([`HgrnConfig`]):
|
99 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
100 |
+
load the weights associated with the model, only the configuration. Check out the
|
101 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
102 |
+
"""
|
103 |
+
|
104 |
+
|
105 |
+
@add_start_docstrings(
|
106 |
+
HGRN_START_DOCSTRING,
|
107 |
+
)
|
108 |
+
class HgrnPreTrainedModel(PreTrainedModel):
|
109 |
+
config_class = HgrnConfig
|
110 |
+
base_model_prefix = "model"
|
111 |
+
supports_gradient_checkpointing = True
|
112 |
+
_no_split_modules = ["HgrnDecoderLayer"]
|
113 |
+
_skip_keys_device_placement = "past_key_values"
|
114 |
+
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
115 |
+
|
116 |
+
def _init_weights(self, module):
|
117 |
+
std = self.config.init_std
|
118 |
+
if isinstance(module, nn.Linear):
|
119 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
120 |
+
if module.bias is not None:
|
121 |
+
module.bias.data.zero_()
|
122 |
+
elif isinstance(module, nn.Embedding):
|
123 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
124 |
+
if module.padding_idx is not None:
|
125 |
+
module.weight.data[module.padding_idx].zero_()
|
126 |
+
|
127 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
128 |
+
if isinstance(module, HgrnModel):
|
129 |
+
module.gradient_checkpointing = value
|
130 |
+
|
131 |
+
@dataclass
|
132 |
+
class HgrnModelOutputWithPast(ModelOutput):
|
133 |
+
last_hidden_state: torch.FloatTensor = None
|
134 |
+
cache_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
135 |
+
|
136 |
+
HGRN_INPUTS_DOCSTRING = r"""
|
137 |
+
Args:
|
138 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
139 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
140 |
+
it.
|
141 |
+
|
142 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
143 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
144 |
+
|
145 |
+
[What are input IDs?](../glossary#input-ids)
|
146 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
147 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
148 |
+
|
149 |
+
- 1 for tokens that are **not masked**,
|
150 |
+
- 0 for tokens that are **masked**.
|
151 |
+
|
152 |
+
[What are attention masks?](../glossary#attention-mask)
|
153 |
+
|
154 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
155 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
156 |
+
|
157 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
158 |
+
`past_key_values`).
|
159 |
+
|
160 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
161 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
162 |
+
information on the default strategy.
|
163 |
+
|
164 |
+
- 1 indicates the head is **not masked**,
|
165 |
+
- 0 indicates the head is **masked**.
|
166 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
167 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
168 |
+
config.n_positions - 1]`.
|
169 |
+
|
170 |
+
[What are position IDs?](../glossary#position-ids)
|
171 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
172 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
173 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
174 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
175 |
+
|
176 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
177 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
178 |
+
|
179 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
180 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
181 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
182 |
+
use_cache (`bool`, *optional*):
|
183 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
184 |
+
`past_key_values`).
|
185 |
+
output_attentions (`bool`, *optional*):
|
186 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
187 |
+
tensors for more detail.
|
188 |
+
output_hidden_states (`bool`, *optional*):
|
189 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
190 |
+
more detail.
|
191 |
+
return_dict (`bool`, *optional*):
|
192 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
193 |
+
"""
|
194 |
+
|
195 |
+
|
196 |
+
@add_start_docstrings(
|
197 |
+
HGRN_START_DOCSTRING,
|
198 |
+
)
|
199 |
+
class HgrnModel(HgrnPreTrainedModel):
|
200 |
+
"""
|
201 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`HgrnDecoderLayer`]
|
202 |
+
|
203 |
+
Args:
|
204 |
+
config: HgrnConfig
|
205 |
+
"""
|
206 |
+
|
207 |
+
def __init__(self, config: HgrnConfig):
|
208 |
+
super().__init__(config)
|
209 |
+
# hf origin
|
210 |
+
self.padding_idx = config.pad_token_id
|
211 |
+
self.vocab_size = config.vocab_size
|
212 |
+
self.gradient_checkpointing = False
|
213 |
+
|
214 |
+
# params
|
215 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.decoder_embed_dim, self.padding_idx)
|
216 |
+
self.layers = nn.ModuleList([HgrnDecoderLayer(config) for i in range(config.decoder_layers)])
|
217 |
+
self.final_norm = get_norm_fn(config.norm_type)(config.decoder_embed_dim)
|
218 |
+
self.embed_dim = config.decoder_embed_dim
|
219 |
+
self.embed_scale = 1.0 if config.no_scale_embedding else math.sqrt(self.embed_dim)
|
220 |
+
self.num_layers = config.decoder_layers
|
221 |
+
self.lower_bounds = nn.Parameter(torch.ones(self.num_layers, self.embed_dim), requires_grad=True)
|
222 |
+
|
223 |
+
# Initialize weights and apply final processing
|
224 |
+
self.post_init()
|
225 |
+
|
226 |
+
def extra_repr(self):
|
227 |
+
return print_module(self)
|
228 |
+
|
229 |
+
def get_input_embeddings(self):
|
230 |
+
return self.embed_tokens
|
231 |
+
|
232 |
+
def set_input_embeddings(self, value):
|
233 |
+
self.embed_tokens = value
|
234 |
+
|
235 |
+
@add_start_docstrings_to_model_forward(HGRN_INPUTS_DOCSTRING)
|
236 |
+
def forward(
|
237 |
+
self,
|
238 |
+
input_ids: torch.LongTensor = None,
|
239 |
+
padding_mask: Optional[torch.Tensor] = None,
|
240 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
241 |
+
return_dict: Optional[bool] = None,
|
242 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
243 |
+
if not self.training and padding_mask != None and padding_mask.eq(self.padding_idx):
|
244 |
+
raise ValueError("During the inference stage, attn_padding_mask should be either None or should not include the pad token.")
|
245 |
+
|
246 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
247 |
+
|
248 |
+
# retrieve input_ids and inputs_embeds
|
249 |
+
if input_ids is not None and inputs_embeds is not None:
|
250 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
251 |
+
elif input_ids is not None:
|
252 |
+
batch_size, seq_length = input_ids.shape
|
253 |
+
elif inputs_embeds is not None:
|
254 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
255 |
+
else:
|
256 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
257 |
+
|
258 |
+
if inputs_embeds is None:
|
259 |
+
# !!! use embed_scale
|
260 |
+
inputs_embeds = self.embed_scale * self.embed_tokens(input_ids)
|
261 |
+
|
262 |
+
hidden_states = inputs_embeds
|
263 |
+
|
264 |
+
cache_values = ()
|
265 |
+
|
266 |
+
# lower bound
|
267 |
+
lower_bounds = self.lower_bounds
|
268 |
+
lower_bounds = F.softmax(lower_bounds, dim=0)
|
269 |
+
lower_bounds = torch.cumsum(lower_bounds, dim=0)
|
270 |
+
lower_bounds -= lower_bounds[0, ...].clone()
|
271 |
+
|
272 |
+
# b, n, d -> n, b, d
|
273 |
+
hidden_states = hidden_states.transpose(1, 0)
|
274 |
+
|
275 |
+
for idx, layer in enumerate(self.layers):
|
276 |
+
lower_bound = lower_bounds[idx]
|
277 |
+
|
278 |
+
if self.gradient_checkpointing and self.training:
|
279 |
+
|
280 |
+
def create_custom_forward(module):
|
281 |
+
def custom_forward(*inputs):
|
282 |
+
# None for past_key_value
|
283 |
+
return module(*inputs, None)
|
284 |
+
|
285 |
+
return custom_forward
|
286 |
+
|
287 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
288 |
+
create_custom_forward(layer),
|
289 |
+
hidden_states,
|
290 |
+
padding_mask,
|
291 |
+
lower_bound,
|
292 |
+
)
|
293 |
+
else:
|
294 |
+
layer_outputs = layer(
|
295 |
+
hidden_states,
|
296 |
+
padding_mask,
|
297 |
+
lower_bound,
|
298 |
+
)
|
299 |
+
|
300 |
+
hidden_states = layer_outputs[0]
|
301 |
+
|
302 |
+
# tbd
|
303 |
+
cache_values += (layer_outputs[1],)
|
304 |
+
|
305 |
+
hidden_states = self.final_norm(hidden_states)
|
306 |
+
|
307 |
+
# n, b, d -> b, n, d
|
308 |
+
hidden_states = hidden_states.transpose(1, 0)
|
309 |
+
|
310 |
+
if not return_dict:
|
311 |
+
return tuple(v for v in [hidden_states, cache_values] if v is not None)
|
312 |
+
return HgrnModelOutputWithPast(
|
313 |
+
last_hidden_state=hidden_states,
|
314 |
+
cache_values=cache_values
|
315 |
+
)
|
316 |
+
|
317 |
+
|
318 |
+
class HgrnForCausalLM(HgrnPreTrainedModel):
|
319 |
+
def __init__(self, config):
|
320 |
+
super().__init__(config)
|
321 |
+
self.model = HgrnModel(config)
|
322 |
+
|
323 |
+
# the lm_head weight is automatically tied to the embed tokens weight
|
324 |
+
self.lm_head = nn.Linear(config.decoder_embed_dim, config.vocab_size, bias=False)
|
325 |
+
|
326 |
+
# Initialize weights and apply final processing
|
327 |
+
self.post_init()
|
328 |
+
|
329 |
+
def get_input_embeddings(self):
|
330 |
+
return self.model.embed_tokens
|
331 |
+
|
332 |
+
def set_input_embeddings(self, value):
|
333 |
+
self.model.embed_tokens = value
|
334 |
+
|
335 |
+
def get_output_embeddings(self):
|
336 |
+
return self.lm_head
|
337 |
+
|
338 |
+
def set_output_embeddings(self, new_embeddings):
|
339 |
+
self.lm_head = new_embeddings
|
340 |
+
|
341 |
+
def set_decoder(self, decoder):
|
342 |
+
self.model = decoder
|
343 |
+
|
344 |
+
def get_decoder(self):
|
345 |
+
return self.model
|
346 |
+
|
347 |
+
@add_start_docstrings_to_model_forward(HGRN_INPUTS_DOCSTRING)
|
348 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
349 |
+
def forward(
|
350 |
+
self,
|
351 |
+
input_ids: torch.LongTensor = None,
|
352 |
+
attention_mask: Optional[torch.Tensor] = None,
|
353 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
354 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
355 |
+
labels: Optional[torch.LongTensor] = None,
|
356 |
+
use_cache: Optional[bool] = None,
|
357 |
+
output_attentions: Optional[bool] = None,
|
358 |
+
output_hidden_states: Optional[bool] = None,
|
359 |
+
return_dict: Optional[bool] = None,
|
360 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
361 |
+
r"""
|
362 |
+
Args:
|
363 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
364 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
365 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
366 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
367 |
+
|
368 |
+
Returns:
|
369 |
+
|
370 |
+
Example:
|
371 |
+
|
372 |
+
```python
|
373 |
+
>>> from transformers import AutoTokenizer, HgrnForCausalLM
|
374 |
+
|
375 |
+
>>> model = HgrnForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
376 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
377 |
+
|
378 |
+
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
379 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
380 |
+
|
381 |
+
>>> # Generate
|
382 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
383 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
384 |
+
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
385 |
+
```"""
|
386 |
+
|
387 |
+
output_hidden_states = (
|
388 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
389 |
+
)
|
390 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
391 |
+
|
392 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
393 |
+
outputs = self.model(
|
394 |
+
input_ids=input_ids,
|
395 |
+
padding_mask=attention_mask,
|
396 |
+
inputs_embeds=inputs_embeds,
|
397 |
+
return_dict=return_dict,
|
398 |
+
)
|
399 |
+
|
400 |
+
hidden_states = outputs[0]
|
401 |
+
logits = self.lm_head(hidden_states)
|
402 |
+
|
403 |
+
loss = None
|
404 |
+
if labels is not None:
|
405 |
+
# Shift so that tokens < n predict n
|
406 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
407 |
+
shift_labels = labels[..., 1:].contiguous()
|
408 |
+
# Flatten the tokens
|
409 |
+
loss_fct = CrossEntropyLoss()
|
410 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
411 |
+
shift_labels = shift_labels.view(-1)
|
412 |
+
# Enable model parallelism
|
413 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
414 |
+
loss = loss_fct(shift_logits, shift_labels)
|
415 |
+
|
416 |
+
if not return_dict:
|
417 |
+
output = (logits,) + outputs[1:]
|
418 |
+
return (loss,) + output if loss is not None else output
|
419 |
+
|
420 |
+
return CausalLMOutputWithPast(
|
421 |
+
loss=loss,
|
422 |
+
logits=logits,
|
423 |
+
past_key_values=outputs.cache_values,
|
424 |
+
)
|
425 |
+
|
426 |
+
def prepare_inputs_for_generation(
|
427 |
+
self, input_ids, past_key_values=None, attn_padding_mask=None, inputs_embeds=None, **kwargs
|
428 |
+
):
|
429 |
+
if past_key_values:
|
430 |
+
input_ids = input_ids[:, -1:]
|
431 |
+
|
432 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
433 |
+
if inputs_embeds is not None and past_key_values is None:
|
434 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
435 |
+
else:
|
436 |
+
model_inputs = {"input_ids": input_ids}
|
437 |
+
|
438 |
+
model_inputs.update(
|
439 |
+
{
|
440 |
+
}
|
441 |
+
)
|
442 |
+
return model_inputs
|
443 |
+
|
444 |
+
@staticmethod
|
445 |
+
def _reorder_cache(past_key_values, beam_idx):
|
446 |
+
reordered_past = ()
|
447 |
+
for layer_past in past_key_values:
|
448 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
449 |
+
return reordered_past
|
450 |
+
|
451 |
+
|
452 |
+
@add_start_docstrings(
|
453 |
+
"""
|
454 |
+
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
455 |
+
|
456 |
+
[`HgrnForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
457 |
+
(e.g. GPT-2) do.
|
458 |
+
|
459 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
460 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
461 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
462 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
463 |
+
each row of the batch).
|
464 |
+
""",
|
465 |
+
HGRN_START_DOCSTRING,
|
466 |
+
)
|
467 |
+
class HgrnForSequenceClassification(HgrnPreTrainedModel):
|
468 |
+
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
|
469 |
+
|
470 |
+
def __init__(self, config):
|
471 |
+
super().__init__(config)
|
472 |
+
self.num_labels = config.num_labels
|
473 |
+
self.model = HgrnModel(config)
|
474 |
+
self.score = nn.Linear(config.decoder_embed_dim, self.num_labels, bias=False)
|
475 |
+
|
476 |
+
# Initialize weights and apply final processing
|
477 |
+
self.post_init()
|
478 |
+
|
479 |
+
def get_input_embeddings(self):
|
480 |
+
return self.model.embed_tokens
|
481 |
+
|
482 |
+
def set_input_embeddings(self, value):
|
483 |
+
self.model.embed_tokens = value
|
484 |
+
|
485 |
+
@add_start_docstrings_to_model_forward(HGRN_INPUTS_DOCSTRING)
|
486 |
+
def forward(
|
487 |
+
self,
|
488 |
+
input_ids: torch.LongTensor = None,
|
489 |
+
attention_mask: Optional[torch.Tensor] = None,
|
490 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
491 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
492 |
+
labels: Optional[torch.LongTensor] = None,
|
493 |
+
use_cache: Optional[bool] = None,
|
494 |
+
output_attentions: Optional[bool] = None,
|
495 |
+
output_hidden_states: Optional[bool] = None,
|
496 |
+
return_dict: Optional[bool] = None,
|
497 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
498 |
+
r"""
|
499 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
500 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
501 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
502 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
503 |
+
"""
|
504 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
505 |
+
|
506 |
+
outputs = self.model(
|
507 |
+
input_ids=input_ids,
|
508 |
+
padding_mask=attention_mask,
|
509 |
+
inputs_embeds=inputs_embeds,
|
510 |
+
return_dict=return_dict,
|
511 |
+
)
|
512 |
+
hidden_states = outputs[0]
|
513 |
+
logits = self.score(hidden_states)
|
514 |
+
|
515 |
+
if input_ids is not None:
|
516 |
+
batch_size = input_ids.shape[0]
|
517 |
+
else:
|
518 |
+
batch_size = inputs_embeds.shape[0]
|
519 |
+
|
520 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
521 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
522 |
+
if self.config.pad_token_id is None:
|
523 |
+
sequence_lengths = -1
|
524 |
+
else:
|
525 |
+
if input_ids is not None:
|
526 |
+
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
527 |
+
else:
|
528 |
+
sequence_lengths = -1
|
529 |
+
|
530 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
531 |
+
|
532 |
+
loss = None
|
533 |
+
if labels is not None:
|
534 |
+
labels = labels.to(logits.device)
|
535 |
+
if self.config.problem_type is None:
|
536 |
+
if self.num_labels == 1:
|
537 |
+
self.config.problem_type = "regression"
|
538 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
539 |
+
self.config.problem_type = "single_label_classification"
|
540 |
+
else:
|
541 |
+
self.config.problem_type = "multi_label_classification"
|
542 |
+
|
543 |
+
if self.config.problem_type == "regression":
|
544 |
+
loss_fct = MSELoss()
|
545 |
+
if self.num_labels == 1:
|
546 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
547 |
+
else:
|
548 |
+
loss = loss_fct(pooled_logits, labels)
|
549 |
+
elif self.config.problem_type == "single_label_classification":
|
550 |
+
loss_fct = CrossEntropyLoss()
|
551 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
552 |
+
elif self.config.problem_type == "multi_label_classification":
|
553 |
+
loss_fct = BCEWithLogitsLoss()
|
554 |
+
loss = loss_fct(pooled_logits, labels)
|
555 |
+
if not return_dict:
|
556 |
+
output = (pooled_logits,) + outputs[1:]
|
557 |
+
return ((loss,) + output) if loss is not None else output
|
558 |
+
|
559 |
+
return SequenceClassifierOutputWithPast(
|
560 |
+
loss=loss,
|
561 |
+
logits=pooled_logits,
|
562 |
+
hidden_states=outputs.hidden_states,
|
563 |
+
)
|
norm.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
class SimpleRMSNorm(nn.Module):
|
5 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
6 |
+
super().__init__()
|
7 |
+
self.eps = eps
|
8 |
+
|
9 |
+
def _norm(self, x):
|
10 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
11 |
+
|
12 |
+
def forward(self, x):
|
13 |
+
output = self._norm(x.float()).type_as(x)
|
14 |
+
|
15 |
+
return output
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": true,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "<|endoftext|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"errors": "replace",
|
22 |
+
"model_max_length": 1000000000000000019884624838656,
|
23 |
+
"pad_token": null,
|
24 |
+
"tokenizer_class": "GPT2Tokenizer",
|
25 |
+
"unk_token": {
|
26 |
+
"__type": "AddedToken",
|
27 |
+
"content": "<|endoftext|>",
|
28 |
+
"lstrip": false,
|
29 |
+
"normalized": true,
|
30 |
+
"rstrip": false,
|
31 |
+
"single_word": false
|
32 |
+
}
|
33 |
+
}
|
utils.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.distributed as dist
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
from .norm import SimpleRMSNorm
|
11 |
+
|
12 |
+
logging.basicConfig(
|
13 |
+
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
|
14 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
15 |
+
level=os.environ.get("LOGLEVEL", "INFO").upper(),
|
16 |
+
stream=sys.stdout,
|
17 |
+
)
|
18 |
+
logger = logging.getLogger("print_config")
|
19 |
+
|
20 |
+
BASE_DIM = 256
|
21 |
+
|
22 |
+
def is_dist_avail_and_initialized():
|
23 |
+
if not dist.is_available():
|
24 |
+
return False
|
25 |
+
if not dist.is_initialized():
|
26 |
+
return False
|
27 |
+
return True
|
28 |
+
|
29 |
+
def get_world_size():
|
30 |
+
if not is_dist_avail_and_initialized():
|
31 |
+
return 1
|
32 |
+
return dist.get_world_size()
|
33 |
+
|
34 |
+
def get_rank():
|
35 |
+
if not is_dist_avail_and_initialized():
|
36 |
+
return 0
|
37 |
+
return dist.get_rank()
|
38 |
+
|
39 |
+
def is_main_process():
|
40 |
+
return get_rank() == 0
|
41 |
+
|
42 |
+
def logging_info(string):
|
43 |
+
if is_main_process():
|
44 |
+
logger.info(string)
|
45 |
+
|
46 |
+
def print_params(**kwargs):
|
47 |
+
if is_main_process():
|
48 |
+
logger.info(f"start print config of {kwargs['__class__']}")
|
49 |
+
for key in kwargs:
|
50 |
+
if key in ["__class__", "self"]:
|
51 |
+
continue
|
52 |
+
logger.info(f"{key}: {kwargs[key]}")
|
53 |
+
logger.info(f"end print config of {kwargs['__class__']}")
|
54 |
+
|
55 |
+
def print_config(config):
|
56 |
+
if is_main_process():
|
57 |
+
logger.info(f"start print config of {config['__class__']}")
|
58 |
+
for key in config:
|
59 |
+
if key in ["__class__", "self"]:
|
60 |
+
continue
|
61 |
+
logger.info(f"{key}: {config[key]}")
|
62 |
+
logger.info(f"end print config of {config['__class__']}")
|
63 |
+
|
64 |
+
def print_module(module):
|
65 |
+
named_modules = set()
|
66 |
+
for p in module.named_modules():
|
67 |
+
named_modules.update([p[0]] )
|
68 |
+
named_modules = list(named_modules)
|
69 |
+
|
70 |
+
string_repr = ''
|
71 |
+
for p in module.named_parameters():
|
72 |
+
name = p[0].split('.')[0]
|
73 |
+
if name not in named_modules:
|
74 |
+
string_repr = string_repr + '('+ name +'): ' \
|
75 |
+
+'Tensor(' + str(tuple(p[1].shape))+ ', requires_grad='+ str(p[1].requires_grad) +')\n'
|
76 |
+
|
77 |
+
return string_repr.rstrip("\n")
|
78 |
+
|
79 |
+
def get_activation_fn(activation):
|
80 |
+
logger.info(f"activation: {activation}")
|
81 |
+
if activation == "gelu":
|
82 |
+
return F.gelu
|
83 |
+
elif activation == "relu":
|
84 |
+
return F.relu
|
85 |
+
elif activation == "elu":
|
86 |
+
return F.elu
|
87 |
+
elif activation == "sigmoid":
|
88 |
+
return F.sigmoid
|
89 |
+
elif activation == "exp":
|
90 |
+
def f(x):
|
91 |
+
with torch.no_grad():
|
92 |
+
x_max = torch.max(x, dim=-1, keepdims=True).values
|
93 |
+
y = torch.exp(x - x_max)
|
94 |
+
|
95 |
+
return y
|
96 |
+
return f
|
97 |
+
elif activation == "leak":
|
98 |
+
return F.leaky_relu
|
99 |
+
elif activation == "1+elu":
|
100 |
+
def f(x):
|
101 |
+
return 1 + F.elu(x)
|
102 |
+
return f
|
103 |
+
elif activation == "2+elu":
|
104 |
+
def f(x):
|
105 |
+
return 2 + F.elu(x)
|
106 |
+
return f
|
107 |
+
elif activation == "silu" or activation == "swish":
|
108 |
+
return F.silu
|
109 |
+
elif activation == "sine":
|
110 |
+
return torch.sin
|
111 |
+
else:
|
112 |
+
logger.info(f"activation: does not support {activation}, use Identity!!!")
|
113 |
+
return lambda x: x
|
114 |
+
|
115 |
+
def get_norm_fn(norm_type):
|
116 |
+
if norm_type == "simplermsnorm":
|
117 |
+
return SimpleRMSNorm
|
118 |
+
else:
|
119 |
+
return nn.LayerNorm
|
120 |
+
|
121 |
+
def convert_to_multiple_of_base(x):
|
122 |
+
return BASE_DIM * ((x + BASE_DIM - 1) // BASE_DIM)
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|