MaziyarPanahi commited on
Commit
7af2f2d
·
verified ·
1 Parent(s): 570f1a8

feat: Upload fine-tuned medical NER model OpenMed-NER-PathologyDetect-BigMed-560M

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ openmed_vs_sota_grouped_bars.png filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ unigram.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ widget:
3
+ - text: "Early detection of breast cancer improves survival rates."
4
+ - text: "The patient exhibited symptoms consistent with Parkinson's disease."
5
+ - text: "Genetic testing revealed predisposition to Huntington's disease."
6
+ - text: "Malaria is a life-threatening disease caused by parasites transmitted through mosquito bites."
7
+ - text: "Multiple sclerosis affects the central nervous system, leading to a range of symptoms."
8
+ tags:
9
+ - token-classification
10
+ - named-entity-recognition
11
+ - biomedical-nlp
12
+ - transformers
13
+ - disease-entity-recognition
14
+ - medical-diagnosis
15
+ - ncbi
16
+ - pathology
17
+ - disease
18
+ language:
19
+ - en
20
+ license: apache-2.0
21
+ ---
22
+
23
+ # 🧬 [OpenMed-NER-PathologyDetect-BigMed-560M](https://huggingface.co/OpenMed/OpenMed-NER-PathologyDetect-BigMed-560M)
24
+
25
+ **Specialized model for Disease Entity Recognition - Disease entities from the NCBI dataset**
26
+
27
+ [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
28
+ [![Python](https://img.shields.io/badge/Python-3.8%2B-blue)]()
29
+ [![Transformers](https://img.shields.io/badge/🤗-Transformers-yellow)]()
30
+ [![OpenMed](https://img.shields.io/badge/🏥-OpenMed-green)](https://huggingface.co/OpenMed)
31
+
32
+ ## 📋 Model Overview
33
+
34
+ This model is a **state-of-the-art** fine-tuned transformer engineered to deliver **enterprise-grade accuracy** for disease entity recognition - disease entities from the ncbi dataset. This specialized model excels at identifying and extracting biomedical entities from clinical texts, research papers, and healthcare documents, enabling applications such as **drug interaction detection**, **medication extraction from patient records**, **adverse event monitoring**, **literature mining for drug discovery**, and **biomedical knowledge graph construction** with **production-ready reliability** for clinical and research applications.
35
+
36
+ ### 🎯 Key Features
37
+ - **High Precision**: Optimized for biomedical entity recognition
38
+ - **Domain-Specific**: Trained on curated NCBI_DISEASE dataset
39
+ - **Production-Ready**: Validated on clinical benchmarks
40
+ - **Easy Integration**: Compatible with Hugging Face Transformers ecosystem
41
+
42
+ ### 🏷️ Supported Entity Types
43
+
44
+ This model can identify and classify the following biomedical entities:
45
+
46
+ - `B-Disease`
47
+ - `I-Disease`
48
+
49
+ ## 📊 Dataset
50
+
51
+ NCBI Disease corpus is a comprehensive resource for disease name recognition and concept normalization.
52
+
53
+ The NCBI Disease corpus is a gold-standard dataset containing 793 PubMed abstracts with 6,892 disease mentions mapped to 790 unique disease concepts from Medical Subject Headings (MeSH) and Online Mendelian Inheritance in Man (OMIM). Developed by the National Center for Biotechnology Information, this corpus provides both mention-level and concept-level annotations for disease entity recognition and normalization. The dataset is extensively used for developing clinical NLP systems, medical diagnosis support tools, and biomedical text mining applications. It serves as a critical benchmark for evaluating disease name recognition systems in healthcare informatics and medical literature analysis.
54
+
55
+
56
+ ## 📊 Performance Metrics
57
+
58
+ ### Current Model Performance
59
+ - **F1 Score**: `0.87`
60
+ - **Precision**: `0.86`
61
+ - **Recall**: `0.89`
62
+ - **Accuracy**: `0.97`
63
+
64
+ ### 🏆 Comparative Performance on NCBI_DISEASE Dataset
65
+
66
+ | Rank | Model | F1 Score | Precision | Recall | Accuracy |
67
+ |------|-------|----------|-----------|--------|-----------|
68
+ | 🥇 1 | [OpenMed-NER-PathologyDetect-PubMed-109M](https://huggingface.co/OpenMed/OpenMed-NER-PathologyDetect-PubMed-109M) | **0.9110** | 0.8918 | 0.9310 | 0.9792 |
69
+ | 🥈 2 | [OpenMed-NER-PathologyDetect-PubMed-335M](https://huggingface.co/OpenMed/OpenMed-NER-PathologyDetect-PubMed-335M) | **0.9086** | 0.8913 | 0.9266 | 0.9781 |
70
+ | 🥉 3 | [OpenMed-NER-PathologyDetect-BioMed-335M](https://huggingface.co/OpenMed/OpenMed-NER-PathologyDetect-BioMed-335M) | **0.9052** | 0.8867 | 0.9244 | 0.9780 |
71
+ | 4 | [OpenMed-NER-PathologyDetect-SuperClinical-434M](https://huggingface.co/OpenMed/OpenMed-NER-PathologyDetect-SuperClinical-434M) | **0.9035** | 0.8772 | 0.9314 | 0.9760 |
72
+ | 5 | [OpenMed-NER-PathologyDetect-PubMed-109M](https://huggingface.co/OpenMed/OpenMed-NER-PathologyDetect-PubMed-109M) | **0.9022** | 0.8825 | 0.9227 | 0.9769 |
73
+ | 6 | [OpenMed-NER-PathologyDetect-ElectraMed-335M](https://huggingface.co/OpenMed/OpenMed-NER-PathologyDetect-ElectraMed-335M) | **0.8977** | 0.8884 | 0.9073 | 0.9719 |
74
+ | 7 | [OpenMed-NER-PathologyDetect-ElectraMed-560M](https://huggingface.co/OpenMed/OpenMed-NER-PathologyDetect-ElectraMed-560M) | **0.8950** | 0.8749 | 0.9161 | 0.9747 |
75
+ | 8 | [OpenMed-NER-PathologyDetect-MultiMed-335M](https://huggingface.co/OpenMed/OpenMed-NER-PathologyDetect-MultiMed-335M) | **0.8903** | 0.8749 | 0.9063 | 0.9692 |
76
+ | 9 | [OpenMed-NER-PathologyDetect-SnowMed-568M](https://huggingface.co/OpenMed/OpenMed-NER-PathologyDetect-SnowMed-568M) | **0.8903** | 0.8684 | 0.9133 | 0.9731 |
77
+ | 10 | [OpenMed-NER-PathologyDetect-SuperClinical-141M](https://huggingface.co/OpenMed/OpenMed-NER-PathologyDetect-SuperClinical-141M) | **0.8894** | 0.8633 | 0.9172 | 0.9744 |
78
+
79
+
80
+ *Rankings based on F1-score performance across all models trained on this dataset.*
81
+
82
+ ![OpenMed (open-source) vs. latest closed-source SOTA](https://huggingface.co/spaces/OpenMed/README/resolve/main/openmed_vs_sota_performance.png)
83
+
84
+ *Figure: OpenMed (Open-Source) vs. Latest SOTA (Closed-Source) performance comparison across biomedical NER datasets.*
85
+
86
+ ## 🚀 Quick Start
87
+
88
+ ### Installation
89
+
90
+ ```bash
91
+ pip install transformers torch
92
+ ```
93
+
94
+ ### Usage
95
+
96
+ ```python
97
+ from transformers import pipeline
98
+
99
+ # Load the model and tokenizer
100
+ # Model: https://huggingface.co/OpenMed/OpenMed-NER-PathologyDetect-BigMed-560M
101
+ model_name = "OpenMed/OpenMed-NER-PathologyDetect-BigMed-560M"
102
+
103
+ # Create a pipeline
104
+ medical_ner_pipeline = pipeline(
105
+ model=model_name,
106
+ aggregation_strategy="simple"
107
+ )
108
+
109
+ # Example usage
110
+ text = "Early detection of breast cancer improves survival rates."
111
+ entities = medical_ner_pipeline(text)
112
+
113
+ print(entities)
114
+
115
+ token = entities[0]
116
+ print(text[token["start"] : token["end"]])
117
+ ```
118
+
119
+ NOTE: The `aggregation_strategy` parameter defines how token predictions are grouped into entities. For a detailed explanation, please refer to the [Hugging Face documentation](https://huggingface.co/docs/transformers/en/main_classes/pipelines#transformers.TokenClassificationPipeline.aggregation_strategy).
120
+
121
+ Here is a summary of the available strategies:
122
+ - **`none`**: Returns raw token predictions without any aggregation.
123
+ - **`simple`**: Groups adjacent tokens with the same entity type (e.g., `B-LOC` followed by `I-LOC`).
124
+ - **`first`**: For word-based models, if tokens within a word have different entity tags, the tag of the first token is assigned to the entire word.
125
+ - **`average`**: For word-based models, this strategy averages the scores of tokens within a word and applies the label with the highest resulting score.
126
+ - **`max`**: For word-based models, the entity label from the token with the highest score within a word is assigned to the entire word.
127
+
128
+ ### Batch Processing
129
+
130
+ For efficient processing of large datasets, use proper batching with the `batch_size` parameter:
131
+
132
+ ```python
133
+ texts = [
134
+ "Early detection of breast cancer improves survival rates.",
135
+ "The patient exhibited symptoms consistent with Parkinson's disease.",
136
+ "Genetic testing revealed predisposition to Huntington's disease.",
137
+ "Malaria is a life-threatening disease caused by parasites transmitted through mosquito bites.",
138
+ "Multiple sclerosis affects the central nervous system, leading to a range of symptoms.",
139
+ ]
140
+
141
+ # Efficient batch processing with optimized batch size
142
+ # Adjust batch_size based on your GPU memory (typically 8, 16, 32, or 64)
143
+ results = medical_ner_pipeline(texts, batch_size=8)
144
+
145
+ for i, entities in enumerate(results):
146
+ print(f"Text {i+1} entities:")
147
+ for entity in entities:
148
+ print(f" - {entity['word']} ({entity['entity_group']}): {entity['score']:.4f}")
149
+ ```
150
+
151
+ ### Large Dataset Processing
152
+
153
+ For processing large datasets efficiently:
154
+
155
+ ```python
156
+ from transformers.pipelines.pt_utils import KeyDataset
157
+ from datasets import Dataset
158
+ import pandas as pd
159
+
160
+ # Load your data
161
+ # Load a medical dataset from Hugging Face
162
+ from datasets import load_dataset
163
+
164
+ # Load a public medical dataset (using a subset for testing)
165
+ medical_dataset = load_dataset("BI55/MedText", split="train[:100]") # Load first 100 examples
166
+ data = pd.DataFrame({"text": medical_dataset["Completion"]})
167
+ dataset = Dataset.from_pandas(data)
168
+
169
+ # Process with optimal batching for your hardware
170
+ batch_size = 16 # Tune this based on your GPU memory
171
+ results = []
172
+
173
+ for out in medical_ner_pipeline(KeyDataset(dataset, "text"), batch_size=batch_size):
174
+ results.extend(out)
175
+
176
+ print(f"Processed {len(results)} texts with batching")
177
+
178
+ ```
179
+
180
+ ### Performance Optimization
181
+
182
+ **Batch Size Guidelines:**
183
+ - **CPU**: Start with batch_size=1-4
184
+ - **Single GPU**: Try batch_size=8-32 depending on GPU memory
185
+ - **High-end GPU**: Can handle batch_size=64 or higher
186
+ - **Monitor GPU utilization** to find the optimal batch size for your hardware
187
+
188
+ **Memory Considerations:**
189
+ ```python
190
+ # For limited GPU memory, use smaller batches
191
+ medical_ner_pipeline = pipeline(
192
+ model=model_name,
193
+ aggregation_strategy="simple",
194
+ device=0 # Specify GPU device
195
+ )
196
+
197
+ # Process with memory-efficient batching
198
+ for batch_start in range(0, len(texts), batch_size):
199
+ batch = texts[batch_start:batch_start + batch_size]
200
+ batch_results = medical_ner_pipeline(batch, batch_size=len(batch))
201
+ results.extend(batch_results)
202
+ ```
203
+
204
+ ## 📚 Dataset Information
205
+
206
+ - **Dataset**: NCBI_DISEASE
207
+ - **Description**: Disease Entity Recognition - Disease entities from the NCBI dataset
208
+
209
+ ### Training Details
210
+ - **Base Model**: xlm-roberta-large
211
+ - **Training Framework**: Hugging Face Transformers
212
+ - **Optimization**: AdamW optimizer with learning rate scheduling
213
+ - **Validation**: Cross-validation on held-out test set
214
+
215
+ ## 🔬 Model Architecture
216
+
217
+ - **Base Architecture**: xlm-roberta-large
218
+ - **Task**: Token Classification (Named Entity Recognition)
219
+ - **Labels**: Dataset-specific entity types
220
+ - **Input**: Tokenized biomedical text
221
+ - **Output**: BIO-tagged entity predictions
222
+
223
+ ## 💡 Use Cases
224
+
225
+ This model is particularly useful for:
226
+ - **Clinical Text Mining**: Extracting entities from medical records
227
+ - **Biomedical Research**: Processing scientific literature
228
+ - **Drug Discovery**: Identifying chemical compounds and drugs
229
+ - **Healthcare Analytics**: Analyzing patient data and outcomes
230
+ - **Academic Research**: Supporting biomedical NLP research
231
+
232
+ ## 📜 License
233
+
234
+ Licensed under the Apache License 2.0. See [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for details.
235
+
236
+ ## 🤝 Contributing
237
+
238
+ We welcome contributions of all kinds! Whether you have ideas, feature requests, or want to join our mission to advance open-source Healthcare AI, we'd love to hear from you.
239
+
240
+ Follow [OpenMed Org](https://huggingface.co/OpenMed) on Hugging Face 🤗 and click "Watch" to stay updated on our latest releases and developments.
241
+
242
+
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "XLMRobertaForTokenClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.2,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": 0.2,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.2,
11
+ "hidden_size": 1024,
12
+ "id2label": {
13
+ "0": "O",
14
+ "1": "B-Disease",
15
+ "2": "I-Disease"
16
+ },
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 4096,
19
+ "label2id": {
20
+ "B-Disease": 1,
21
+ "I-Disease": 2,
22
+ "O": 0
23
+ },
24
+ "layer_norm_eps": 1e-07,
25
+ "max_position_embeddings": 514,
26
+ "model_type": "xlm-roberta",
27
+ "num_attention_heads": 16,
28
+ "num_hidden_layers": 24,
29
+ "output_past": true,
30
+ "pad_token_id": 1,
31
+ "position_embedding_type": "absolute",
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.51.2",
34
+ "type_vocab_size": 1,
35
+ "use_cache": true,
36
+ "vocab_size": 250002
37
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1ade65a5c2804bb9fa1f3484b449821261924f145b48f039f25ed091dadad30
3
+ size 1117736094
openmed_vs_sota_grouped_bars.png ADDED

Git LFS Details

  • SHA256: 626b37d9b20c44e26c92a8b5bf774107393ae0ad0b482d8e7cb3dc31d960f611
  • Pointer size: 131 Bytes
  • Size of remote file: 497 kB
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
test_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "eval_accuracy": 0.9730410588058355,
3
+ "eval_f1": 0.8722869545350697,
4
+ "eval_loss": 0.35837677121162415,
5
+ "eval_precision": 0.8552867383512545,
6
+ "eval_recall": 0.88997668997669
7
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a56def25aa40facc030ea8b0b87f3688e4b3c39eb8b45d5702b3a1300fe2a20
3
+ size 17082734
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "250001": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "model_max_length": 512,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "tokenizer_class": "RobertaTokenizer",
56
+ "trim_offsets": true,
57
+ "unk_token": "<unk>"
58
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260