File size: 2,105 Bytes
040caa7 9263bfe 040caa7 9263bfe 040caa7 9263bfe 040caa7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
library_name: transformers
license: llama3.1
base_model: meta-llama/Llama-3.1-8B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: llama_8b_lima_44
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama_8b_lima_44
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the open_webui_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9029
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.5e-06
- train_batch_size: 3
- eval_batch_size: 2
- seed: 66
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 6
- total_train_batch_size: 36
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: polynomial
- lr_scheduler_warmup_steps: 50
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0313 | 0.0974 | 80 | 0.9290 |
| 0.985 | 0.1948 | 160 | 0.9194 |
| 1.091 | 0.2923 | 240 | 0.9109 |
| 0.9087 | 0.3897 | 320 | 0.9030 |
| 1.0107 | 0.4871 | 400 | 0.8975 |
| 0.9108 | 0.5845 | 480 | 0.8940 |
| 1.1531 | 0.6820 | 560 | 0.9039 |
| 1.2698 | 0.7794 | 640 | 0.9069 |
| 1.1988 | 0.8768 | 720 | 0.9063 |
| 1.1649 | 0.9742 | 800 | 0.9046 |
### Framework versions
- Transformers 4.46.1
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.3
|