class HyperConv1D(layers.Layer): def __init__(self, d_model, k=7, mem_size=64, hyper_dim=128, dropout=0.0): super().__init__() assert k % 2 == 1 self.k = k self.d_model = d_model self.mem_size = mem_size # Input projection self.input_proj = layers.Dense(d_model, name="input_proj") # Local depthwise conv self.local_conv = layers.DepthwiseConv1D(kernel_size=k, padding='same', activation='silu') self.local_proj = layers.Dense(d_model, name="local_proj") # Hypernetwork: global -> scale vector self.hyper = tf.keras.Sequential([ layers.Dense(hyper_dim, activation='gelu'), layers.Dense(d_model) ], name="hyper") # Associative memory self.mem_keys = self.add_weight((mem_size, d_model), initializer='glorot_uniform', trainable=True) self.mem_vals = self.add_weight((mem_size, d_model), initializer='glorot_uniform', trainable=True) self.mem_proj = layers.Dense(d_model) self.norm = layers.LayerNormalization() self.attn_pool = layers.Dense(1) def call(self, x): x_in = x x_dtype = x.dtype # 입력 dtype 기억 # 1) input projection x_proj = self.input_proj(x) # memory와 연산 위해 dtype 통일 mem_dtype = self.mem_keys.dtype x_proj = tf.cast(x_proj, mem_dtype) # 2) local conv out_local = self.local_conv(x_proj) # hypernetwork scaling global_z = self.attn_pool(x_proj) global_z = tf.nn.softmax(global_z, axis=1) global_z = tf.reduce_sum(x_proj * global_z, axis=1) scale = tf.expand_dims(tf.nn.sigmoid(self.hyper(global_z)), 1) out_local = out_local * scale out_local = self.local_proj(out_local) # 3) associative memory sims = tf.matmul(x_proj, self.mem_keys, transpose_b=True) / tf.math.sqrt(tf.cast(self.d_model, mem_dtype)) attn = tf.nn.softmax(sims, axis=-1) mem_read = tf.matmul(attn, self.mem_vals) mem_read = self.mem_proj(mem_read) # 4) fuse & residual out = out_local + mem_read out = self.norm(x_proj + out) out = tf.nn.silu(out) # 최종 출력 dtype 원래 입력 dtype으로 캐스트 return tf.cast(out, x_dtype)