mihaimasala commited on
Commit
e3f4e32
·
verified ·
1 Parent(s): e390b22

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +719 -717
README.md CHANGED
@@ -1,718 +1,720 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- language:
4
- - ro
5
- base_model:
6
- - OpenLLM-Ro/RoLlama2-7b-Base
7
- datasets:
8
- - OpenLLM-Ro/ro_sft_alpaca
9
- - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
- - OpenLLM-Ro/ro_sft_dolly
11
- - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
- - OpenLLM-Ro/ro_sft_norobots
13
- - OpenLLM-Ro/ro_sft_orca
14
- - OpenLLM-Ro/ro_sft_camel
15
- - OpenLLM-Ro/ro_sft_oasst
16
- - OpenLLM-Ro/ro_sft_ultrachat
17
- - OpenLLM-Ro/ro_sft_magpie_mt
18
- - OpenLLM-Ro/ro_sft_magpie_reasoning
19
- model-index:
20
- - name: OpenLLM-Ro/RoLlama2-7b-Instruct-2025-04-23
21
- results:
22
- - task:
23
- type: text-generation
24
- dataset:
25
- name: RoMT-Bench
26
- type: RoMT-Bench
27
- metrics:
28
- - name: Score
29
- type: Score
30
- value: 4.97
31
- - task:
32
- type: text-generation
33
- dataset:
34
- name: RoCulturaBench
35
- type: RoCulturaBench
36
- metrics:
37
- - name: Score
38
- type: Score
39
- value: 4.56
40
- - task:
41
- type: text-generation
42
- dataset:
43
- name: Romanian_Academic_Benchmarks
44
- type: Romanian_Academic_Benchmarks
45
- metrics:
46
- - name: Average accuracy
47
- type: accuracy
48
- value: 45.51
49
- - task:
50
- type: text-generation
51
- dataset:
52
- name: OpenLLM-Ro/ro_arc_challenge
53
- type: OpenLLM-Ro/ro_arc_challenge
54
- metrics:
55
- - name: Average accuracy
56
- type: accuracy
57
- value: 45.7
58
- - task:
59
- type: text-generation
60
- dataset:
61
- name: OpenLLM-Ro/ro_mmlu
62
- type: OpenLLM-Ro/ro_mmlu
63
- metrics:
64
- - name: Average accuracy
65
- type: accuracy
66
- value: 40.36
67
- - task:
68
- type: text-generation
69
- dataset:
70
- name: OpenLLM-Ro/ro_winogrande
71
- type: OpenLLM-Ro/ro_winogrande
72
- metrics:
73
- - name: Average accuracy
74
- type: accuracy
75
- value: 63.26
76
- - task:
77
- type: text-generation
78
- dataset:
79
- name: OpenLLM-Ro/ro_hellaswag
80
- type: OpenLLM-Ro/ro_hellaswag
81
- metrics:
82
- - name: Average accuracy
83
- type: accuracy
84
- value: 60.25
85
- - task:
86
- type: text-generation
87
- dataset:
88
- name: OpenLLM-Ro/ro_gsm8k
89
- type: OpenLLM-Ro/ro_gsm8k
90
- metrics:
91
- - name: Average accuracy
92
- type: accuracy
93
- value: 18.02
94
- - task:
95
- type: text-generation
96
- dataset:
97
- name: OpenLLM-Ro/ro_truthfulqa
98
- type: OpenLLM-Ro/ro_truthfulqa
99
- metrics:
100
- - name: Average accuracy
101
- type: accuracy
102
- value: 45.48
103
- - task:
104
- type: text-generation
105
- dataset:
106
- name: LaRoSeDa_binary
107
- type: LaRoSeDa_binary
108
- metrics:
109
- - name: Average macro-f1
110
- type: macro-f1
111
- value: 97.6
112
- - task:
113
- type: text-generation
114
- dataset:
115
- name: LaRoSeDa_multiclass
116
- type: LaRoSeDa_multiclass
117
- metrics:
118
- - name: Average macro-f1
119
- type: macro-f1
120
- value: 60.22
121
- - task:
122
- type: text-generation
123
- dataset:
124
- name: WMT_EN-RO
125
- type: WMT_EN-RO
126
- metrics:
127
- - name: Average bleu
128
- type: bleu
129
- value: 27.21
130
- - task:
131
- type: text-generation
132
- dataset:
133
- name: WMT_RO-EN
134
- type: WMT_RO-EN
135
- metrics:
136
- - name: Average bleu
137
- type: bleu
138
- value: 22.15
139
- - task:
140
- type: text-generation
141
- dataset:
142
- name: XQuAD
143
- type: XQuAD
144
- metrics:
145
- - name: Average exact_match
146
- type: exact_match
147
- value: 47.39
148
- - task:
149
- type: text-generation
150
- dataset:
151
- name: XQuAD
152
- type: XQuAD
153
- metrics:
154
- - name: Average f1
155
- type: f1
156
- value: 65.77
157
- - task:
158
- type: text-generation
159
- dataset:
160
- name: STS
161
- type: STS
162
- metrics:
163
- - name: Average spearman
164
- type: spearman
165
- value: 59.05
166
- - task:
167
- type: text-generation
168
- dataset:
169
- name: STS
170
- type: STS
171
- metrics:
172
- - name: Average pearson
173
- type: pearson
174
- value: 56.45
175
- - task:
176
- type: text-generation
177
- dataset:
178
- name: RoMT-Bench
179
- type: RoMT-Bench
180
- metrics:
181
- - name: First turn
182
- type: Score
183
- value: 5.56
184
- - name: Second turn
185
- type: Score
186
- value: 4.39
187
- - task:
188
- type: text-generation
189
- dataset:
190
- name: OpenLLM-Ro/ro_arc_challenge
191
- type: OpenLLM-Ro/ro_arc_challenge
192
- metrics:
193
- - name: 0-shot
194
- type: accuracy
195
- value: 43.02
196
- - name: 1-shot
197
- type: accuracy
198
- value: 45.84
199
- - name: 3-shot
200
- type: accuracy
201
- value: 45.24
202
- - name: 5-shot
203
- type: accuracy
204
- value: 46.19
205
- - name: 10-shot
206
- type: accuracy
207
- value: 46.7
208
- - name: 25-shot
209
- type: accuracy
210
- value: 47.22
211
- - task:
212
- type: text-generation
213
- dataset:
214
- name: OpenLLM-Ro/ro_mmlu
215
- type: OpenLLM-Ro/ro_mmlu
216
- metrics:
217
- - name: 0-shot
218
- type: accuracy
219
- value: 38.64
220
- - name: 1-shot
221
- type: accuracy
222
- value: 40.77
223
- - name: 3-shot
224
- type: accuracy
225
- value: 41.19
226
- - name: 5-shot
227
- type: accuracy
228
- value: 40.86
229
- - task:
230
- type: text-generation
231
- dataset:
232
- name: OpenLLM-Ro/ro_winogrande
233
- type: OpenLLM-Ro/ro_winogrande
234
- metrics:
235
- - name: 0-shot
236
- type: accuracy
237
- value: 63.61
238
- - name: 1-shot
239
- type: accuracy
240
- value: 62.75
241
- - name: 3-shot
242
- type: accuracy
243
- value: 63.46
244
- - name: 5-shot
245
- type: accuracy
246
- value: 63.22
247
- - task:
248
- type: text-generation
249
- dataset:
250
- name: OpenLLM-Ro/ro_hellaswag
251
- type: OpenLLM-Ro/ro_hellaswag
252
- metrics:
253
- - name: 0-shot
254
- type: accuracy
255
- value: 59.79
256
- - name: 1-shot
257
- type: accuracy
258
- value: 59.62
259
- - name: 3-shot
260
- type: accuracy
261
- value: 60.12
262
- - name: 5-shot
263
- type: accuracy
264
- value: 60.71
265
- - name: 10-shot
266
- type: accuracy
267
- value: 61.01
268
- - task:
269
- type: text-generation
270
- dataset:
271
- name: OpenLLM-Ro/ro_gsm8k
272
- type: OpenLLM-Ro/ro_gsm8k
273
- metrics:
274
- - name: 1-shot
275
- type: accuracy
276
- value: 6.14
277
- - name: 3-shot
278
- type: accuracy
279
- value: 22.52
280
- - name: 5-shot
281
- type: accuracy
282
- value: 25.4
283
- - task:
284
- type: text-generation
285
- dataset:
286
- name: LaRoSeDa_binary
287
- type: LaRoSeDa_binary
288
- metrics:
289
- - name: 0-shot
290
- type: macro-f1
291
- value: 98.17
292
- - name: 1-shot
293
- type: macro-f1
294
- value: 96.3
295
- - name: 3-shot
296
- type: macro-f1
297
- value: 97.8
298
- - name: 5-shot
299
- type: macro-f1
300
- value: 98.13
301
- - task:
302
- type: text-generation
303
- dataset:
304
- name: LaRoSeDa_multiclass
305
- type: LaRoSeDa_multiclass
306
- metrics:
307
- - name: 0-shot
308
- type: macro-f1
309
- value: 49.8
310
- - name: 1-shot
311
- type: macro-f1
312
- value: 56.03
313
- - name: 3-shot
314
- type: macro-f1
315
- value: 65.33
316
- - name: 5-shot
317
- type: macro-f1
318
- value: 69.7
319
- - task:
320
- type: text-generation
321
- dataset:
322
- name: WMT_EN-RO
323
- type: WMT_EN-RO
324
- metrics:
325
- - name: 0-shot
326
- type: bleu
327
- value: 19.34
328
- - name: 1-shot
329
- type: bleu
330
- value: 29.89
331
- - name: 3-shot
332
- type: bleu
333
- value: 29.99
334
- - name: 5-shot
335
- type: bleu
336
- value: 29.62
337
- - task:
338
- type: text-generation
339
- dataset:
340
- name: WMT_RO-EN
341
- type: WMT_RO-EN
342
- metrics:
343
- - name: 0-shot
344
- type: bleu
345
- value: 2.29
346
- - name: 1-shot
347
- type: bleu
348
- value: 14.74
349
- - name: 3-shot
350
- type: bleu
351
- value: 34.82
352
- - name: 5-shot
353
- type: bleu
354
- value: 36.75
355
- - task:
356
- type: text-generation
357
- dataset:
358
- name: XQuAD_EM
359
- type: XQuAD_EM
360
- metrics:
361
- - name: 0-shot
362
- type: exact_match
363
- value: 42.86
364
- - name: 1-shot
365
- type: exact_match
366
- value: 47.82
367
- - name: 3-shot
368
- type: exact_match
369
- value: 48.32
370
- - name: 5-shot
371
- type: exact_match
372
- value: 50.59
373
- - task:
374
- type: text-generation
375
- dataset:
376
- name: XQuAD_F1
377
- type: XQuAD_F1
378
- metrics:
379
- - name: 0-shot
380
- type: f1
381
- value: 63.66
382
- - name: 1-shot
383
- type: f1
384
- value: 65.27
385
- - name: 3-shot
386
- type: f1
387
- value: 66.04
388
- - name: 5-shot
389
- type: f1
390
- value: 68.12
391
- - task:
392
- type: text-generation
393
- dataset:
394
- name: STS_Spearman
395
- type: STS_Spearman
396
- metrics:
397
- - name: 1-shot
398
- type: spearman
399
- value: 54.51
400
- - name: 3-shot
401
- type: spearman
402
- value: 60.98
403
- - name: 5-shot
404
- type: spearman
405
- value: 61.65
406
- - task:
407
- type: text-generation
408
- dataset:
409
- name: STS_Pearson
410
- type: STS_Pearson
411
- metrics:
412
- - name: 1-shot
413
- type: pearson
414
- value: 54.35
415
- - name: 3-shot
416
- type: pearson
417
- value: 57.88
418
- - name: 5-shot
419
- type: pearson
420
- value: 57.13
421
- ---
422
-
423
- # Model Card for Model ID
424
-
425
- <!-- Provide a quick summary of what the model is/does. -->
426
-
427
- RoLlama2 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 7B model**. Links to other models can be found at the bottom of this page.
428
-
429
- ## Model Details
430
-
431
- ### Model Description
432
-
433
- <!-- Provide a longer summary of what this model is. -->
434
- OpenLLM represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
435
-
436
-
437
- - **Developed by:** OpenLLM-Ro
438
- <!-- - **Funded by [optional]:** [More Information Needed] -->
439
- <!-- - **Shared by [optional]:** [More Information Needed] -->
440
- <!-- - **Model type:** [More Information Needed] -->
441
- - **Language(s):** Romanian
442
- - **License:** cc-by-nc-4.0
443
- - **Finetuned from model:** [RoLlama2-7b-Base](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Base)
444
- - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat), [RoMagpiePro](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_mt), [RoMagpieReasoning](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_reasoning)
445
-
446
-
447
- ### Model Sources
448
-
449
- <!-- Provide the basic links for the model. -->
450
-
451
- - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
452
- - **Paper:** https://arxiv.org/abs/2406.18266
453
-
454
- ## Intended Use
455
-
456
- ### Intended Use Cases
457
-
458
- RoLlama2 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
459
-
460
- ### Out-of-Scope Use
461
-
462
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
463
-
464
- Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
465
-
466
-
467
-
468
- ## How to Get Started with the Model
469
-
470
- Use the code below to get started with the model.
471
-
472
- ```python
473
- from transformers import AutoTokenizer, AutoModelForCausalLM
474
-
475
- tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama2-7b-Instruct-2025-04-23")
476
- model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama2-7b-Instruct-2025-04-23")
477
-
478
- instruction = "Care este cel mai înalt vârf muntos din România?"
479
- chat = [
480
- {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
481
- {"role": "user", "content": instruction},
482
- ]
483
- prompt = tokenizer.apply_chat_template(chat, tokenize=False)
484
-
485
- inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
486
- outputs = model.generate(input_ids=inputs, max_new_tokens=128)
487
- print(tokenizer.decode(outputs[0]))
488
- ```
489
-
490
- ## Academic Benchmarks
491
-
492
- <table>
493
- <tbody>
494
- <tr>
495
- <td><strong>Model</strong></td>
496
- <td><strong><center>Average</center></strong></td>
497
- <td><strong><center>ARC</center></strong></td>
498
- <td><strong><center>MMLU</center></strong></td>
499
- <td><strong><center>Winogrande</center></strong></td>
500
- <td><strong><center>Hellaswag</center></strong></td>
501
- <td><strong><center>GSM8k</center></strong></td>
502
- <td><strong><center>TruthfulQA</center></strong></td>
503
- </tr>
504
- <tr>
505
- <td>Llama-2-7b-chat</td><td><center>36.84</center></td><td><center>37.03</center></td><td><center>33.80</center></td><td><center>55.87</center></td><td><center>45.36</center></td><td><center>4.90</center></td><td><center>44.09</center></td>
506
- </tr>
507
- <tr>
508
- <td>RoLlama2-7b-Instruct-2024-05-14</td><td><center>45.71</center></td><td><center>43.66</center></td><td><center>39.70</center></td><td><center><strong>70.34</strong></center></td><td><center>57.36</center></td><td><center><strong>18.78</strong></center></td><td><center>44.44</center></td>
509
- </tr>
510
- <tr>
511
- <td>RoLlama2-7b-Instruct-2024-10-09</td><td><center>44.50</center></td><td><center>44.73</center></td><td><center>40.39</center></td><td><center>63.67</center></td><td><center>59.12</center></td><td><center>13.29</center></td><td><center>45.78</center></td>
512
- </tr>
513
- <tr>
514
- <td><em>RoLlama2-7b-Instruct-2025-04-23</em></td><td><center><em>45.51</em></center></td><td><center><em>45.70</em></center></td><td><center><em>40.36</em></center></td><td><center><em>63.26</em></center></td><td><center><em>60.25</em></center></td><td><center><em>18.02</em></center></td><td><center><em>45.48</em></center></td>
515
- </tr>
516
- <tr>
517
- <td>RoLlama2-7b-Instruct-DPO-2024-10-09</td><td><center>43.20</center></td><td><center>44.24</center></td><td><center>38.39</center></td><td><center>62.57</center></td><td><center>59.20</center></td><td><center>15.72</center></td><td><center>39.07</center></td>
518
- </tr>
519
- <tr>
520
- <td>RoLlama2-7b-Instruct-DPO-2025-04-23</td><td><center><strong>46.77</strong></center></td><td><center><strong>48.16</strong></center></td><td><center><strong>41.38</strong></center></td><td><center>64.15</center></td><td><center><strong>61.37</strong></center></td><td><center>18.35</center></td><td><center><strong>47.20</strong></center></td>
521
- </tr>
522
- </tbody>
523
- </table>
524
-
525
- ## Downstream tasks
526
-
527
-
528
- <table>
529
- <tbody>
530
- <tr>
531
- <td></td>
532
- <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
533
- <td colspan="4"><center><strong>WMT</strong></center></td>
534
- </tr>
535
- <tr>
536
- <td></td>
537
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
538
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
539
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
540
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
541
- </tr>
542
- <tr>
543
- <td><strong>Model</strong></td>
544
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
545
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
546
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
547
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
548
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
549
- <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
550
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
551
- <td><center><strong>RO-EN<br>(Bleu)</strong></center>
552
- </tr>
553
- <tr>
554
- <td>Llama-2-7b-chat</td><td><center>87.78</center></td><td><center>52.81</center></td><td><center>97.27</center></td><td><center>82.02</center></td><td><center>15.55</center></td><td><center><strong>28.53</strong></center></td><td><center>19.99</center></td><td><center>31.48</center></td>
555
- </tr>
556
- <tr>
557
- <td>RoLlama2-7b-Instruct-2024-05-14</td><td><center>97.48</center></td><td><center><strong>65.26</strong></center></td><td><center><strong>98.83</strong></center></td><td><center><strong>87.28</strong></center></td><td><center><strong>27.38</strong></center></td><td><center>10.32</center></td><td><center>27.59</center></td><td><center><strong>40.13</strong></center></td>
558
- </tr>
559
- <tr>
560
- <td>RoLlama2-7b-Instruct-2024-10-09</td><td><center>97.66</center></td><td><center>62.41</center></td><td><center>97.97</center></td><td><center>60.89</center></td><td><center>27.13</center></td><td><center>19.39</center></td><td><center><strong>27.63</strong></center></td><td><center>39.75</center></td>
561
- </tr>
562
- <tr>
563
- <td><em>RoLlama2-7b-Instruct-2025-04-23</em></td><td><center><em>97.60</em></center></td><td><center><em>60.22</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>27.21</em></center></td><td><center><em>22.15</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
564
- </tr>
565
- <tr>
566
- <td>RoLlama2-7b-Instruct-DPO-2024-10-09</td><td><center>97.31</center></td><td><center>60.56</center></td><td><center>-</center></td><td><center>-</center></td><td><center>26.56</center></td><td><center>21.68</center></td><td><center>-</center></td><td><center>-</center></td>
567
- </tr>
568
- <tr>
569
- <td>RoLlama2-7b-Instruct-DPO-2025-04-23</td><td><center><strong>97.77</strong></center></td><td><center>65.21</center></td><td><center>-</center></td><td><center>-</center></td><td><center>25.48</center></td><td><center>22.75</center></td><td><center>-</center></td><td><center>-</center></td>
570
- </tr>
571
- </tbody>
572
- </table>
573
-
574
-
575
- <table>
576
- <tbody>
577
- <tr>
578
- <td></td>
579
- <td colspan="4"><center><strong>XQuAD</strong></center></td>
580
- <td colspan="4"><center><strong>STS</strong></center></td>
581
- </tr>
582
- <tr>
583
- <td></td>
584
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
585
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
586
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
587
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
588
- </tr>
589
- <tr>
590
- <td><strong>Model</strong></td>
591
- <td><center><strong>(EM)</strong></center></td>
592
- <td><center><strong>(F1)</strong></center></td>
593
- <td><center><strong>(EM)</strong></center></td>
594
- <td><center><strong>(F1)</strong></center></td>
595
- <td><center><strong>(Spearman)</strong></center></td>
596
- <td><center><strong>(Pearson)</strong></center></td>
597
- <td><center><strong>(Spearman)</strong></center></td>
598
- <td><center><strong>(Pearson)</strong></center></td>
599
- </tr>
600
- <tr>
601
- <td>Llama-2-7b-chat</td><td><center>32.35</center></td><td><center>54.00</center></td><td><center><strong>60.34</strong></center></td><td><center><strong>75.98</strong></center></td><td><center>32.56</center></td><td><center>31.99</center></td><td><center>74.08</center></td><td><center>72.64</center></td>
602
- </tr>
603
- <tr>
604
- <td>RoLlama2-7b-Instruct-2024-05-14</td><td><center>44.52</center></td><td><center>64.75</center></td><td><center>54.96</center></td><td><center>70.20</center></td><td><center>65.50</center></td><td><center><strong>67.79</strong></center></td><td><center>84.44</center></td><td><center>84.76</center></td>
605
- </tr>
606
- <tr>
607
- <td>RoLlama2-7b-Instruct-2024-10-09</td><td><center>45.71</center></td><td><center>65.08</center></td><td><center>59.24</center></td><td><center>74.25</center></td><td><center>59.69</center></td><td><center>57.16</center></td><td><center><strong>84.66</strong></center></td><td><center><strong>85.07</strong></center></td>
608
- </tr>
609
- <tr>
610
- <td><em>RoLlama2-7b-Instruct-2025-04-23</em></td><td><center><em><strong>47.39</strong></em></center></td><td><center><em><strong>65.77</strong></em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>59.05</em></center></td><td><center><em>56.45</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
611
- </tr>
612
- <tr>
613
- <td>RoLlama2-7b-Instruct-DPO-2024-10-09</td><td><center>35.78</center></td><td><center>59.31</center></td><td><center>-</center></td><td><center>-</center></td><td><center>61.22</center></td><td><center>58.41</center></td><td><center>-</center></td><td><center>-</center></td>
614
- </tr>
615
- <tr>
616
- <td>RoLlama2-7b-Instruct-DPO-2025-04-23</td><td><center>38.28</center></td><td><center>60.88</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>66.76</strong></center></td><td><center>64.72</center></td><td><center>-</center></td><td><center>-</center></td>
617
- </tr>
618
- </tbody>
619
- </table>
620
-
621
-
622
- ## Romanian MT-Bench
623
-
624
- <table>
625
- <tbody>
626
- <tr>
627
- <td><strong>Model</strong></td>
628
- <td><strong><center>Average</center></strong></td>
629
- <td><strong><center>1st turn</center></strong></td>
630
- <td><strong><center>2nd turn</center></strong></td>
631
- <td><strong><center>Answers in Ro</center></strong></td>
632
- </tr>
633
- <tr>
634
- <td>Llama-2-7b-chat</td><td><center>1.08</center></td><td><center>1.44</center></td><td><center>0.73</center></td><td><center>45/160</center></td>
635
- </tr>
636
- <tr>
637
- <td>RoLlama2-7b-Instruct-2024-05-14</td><td><center>3.86</center></td><td><center>4.67</center></td><td><center>3.04</center></td><td><center><strong>160/160</strong></center></td>
638
- </tr>
639
- <tr>
640
- <td>RoLlama2-7b-Instruct-2024-10-09</td><td><center>4.43</center></td><td><center>4.92</center></td><td><center>3.94</center></td><td><center><strong>160/160</strong></center></td>
641
- </tr>
642
- <tr>
643
- <td><em>RoLlama2-7b-Instruct-2025-04-23</em></td><td><center><em>4.97</em></center></td><td><center><em>5.56</em></center></td><td><center><em>4.39</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
644
- </tr>
645
- <tr>
646
- <td>RoLlama2-7b-Instruct-DPO-2024-10-09</td><td><center>4.61</center></td><td><center>5.15</center></td><td><center>4.06</center></td><td><center><strong>160/160</strong></center></td>
647
- </tr>
648
- <tr>
649
- <td>RoLlama2-7b-Instruct-DPO-2025-04-23</td><td><center><strong>5.55</strong></center></td><td><center><strong>5.84</strong></center></td><td><center><strong>5.26</strong></center></td><td><center><strong>160/160</strong></center></td>
650
- </tr>
651
- </tbody>
652
- </table>
653
-
654
-
655
- ## RoCulturaBench
656
-
657
-
658
- <table>
659
- <tbody>
660
- <tr>
661
- <td><strong>Model</strong></td>
662
- <td><strong><center>Average</center></strong></td>
663
- <td><strong><center>Answers in Ro</center></strong></td>
664
- </tr>
665
- <tr>
666
- <td>Llama-2-7b-chat</td><td><center>1.21</center></td><td><center>33/100</center></td>
667
- </tr>
668
- <tr>
669
- <td>RoLlama2-7b-Instruct-2024-05-14</td><td><center>3.77</center></td><td><center><strong>100/100</strong></center></td>
670
- </tr>
671
- <tr>
672
- <td>RoLlama2-7b-Instruct-2024-10-09</td><td><center>4.08</center></td><td><center><strong>100/100</strong></center></td>
673
- </tr>
674
- <tr>
675
- <td><em>RoLlama2-7b-Instruct-2025-04-23</em></td><td><center><em>4.56</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
676
- </tr>
677
- <tr>
678
- <td>RoLlama2-7b-Instruct-DPO-2024-10-09</td><td><center>4.80</center></td><td><center><strong>100/100</strong></center></td>
679
- </tr>
680
- <tr>
681
- <td>RoLlama2-7b-Instruct-DPO-2025-04-23</td><td><center><strong>5.24</strong></center></td><td><center><strong>100/100</strong></center></td>
682
- </tr>
683
- </tbody>
684
- </table>
685
-
686
-
687
-
688
-
689
-
690
- ## RoLlama2 Model Family
691
-
692
- | Model | Link |
693
- |--------------------|:--------:|
694
- |RoLlama2-7b-Base-2024-05-14 | [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Base-2024-05-14) |
695
- |RoLlama2-7b-Instruct-2024-05-14 | [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct-2024-05-14) |
696
- |RoLlama2-7b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct-2024-10-09) |
697
- |*RoLlama2-7b-Instruct-2025-04-23*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct-2025-04-23) |
698
- |RoLlama2-7b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct-DPO-2024-10-09) |
699
- |RoLlama2-7b-Instruct-DPO-2025-04-23| [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct-DPO-2025-04-23) |
700
-
701
-
702
-
703
- ## Citation
704
-
705
- ```
706
- @misc{masala2024vorbecstiromanecsterecipetrain,
707
- title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
708
- author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
709
- year={2024},
710
- eprint={2406.18266},
711
- archivePrefix={arXiv},
712
- primaryClass={cs.CL},
713
- url={https://arxiv.org/abs/2406.18266},
714
- }
715
- ```
716
- <!-- **APA:**
717
-
 
 
718
  [More Information Needed] -->
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - ro
5
+ base_model:
6
+ - OpenLLM-Ro/RoLlama2-7b-Base
7
+ datasets:
8
+ - OpenLLM-Ro/ro_sft_alpaca
9
+ - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
+ - OpenLLM-Ro/ro_sft_dolly
11
+ - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
+ - OpenLLM-Ro/ro_sft_norobots
13
+ - OpenLLM-Ro/ro_sft_orca
14
+ - OpenLLM-Ro/ro_sft_camel
15
+ - OpenLLM-Ro/ro_sft_oasst
16
+ - OpenLLM-Ro/ro_sft_ultrachat
17
+ - OpenLLM-Ro/ro_sft_magpie_mt
18
+ - OpenLLM-Ro/ro_sft_magpie_reasoning
19
+ model-index:
20
+ - name: OpenLLM-Ro/RoLlama2-7b-Instruct-2025-04-23
21
+ results:
22
+ - task:
23
+ type: text-generation
24
+ dataset:
25
+ name: RoMT-Bench
26
+ type: RoMT-Bench
27
+ metrics:
28
+ - name: Score
29
+ type: Score
30
+ value: 4.97
31
+ - task:
32
+ type: text-generation
33
+ dataset:
34
+ name: RoCulturaBench
35
+ type: RoCulturaBench
36
+ metrics:
37
+ - name: Score
38
+ type: Score
39
+ value: 4.56
40
+ - task:
41
+ type: text-generation
42
+ dataset:
43
+ name: Romanian_Academic_Benchmarks
44
+ type: Romanian_Academic_Benchmarks
45
+ metrics:
46
+ - name: Average accuracy
47
+ type: accuracy
48
+ value: 45.51
49
+ - task:
50
+ type: text-generation
51
+ dataset:
52
+ name: OpenLLM-Ro/ro_arc_challenge
53
+ type: OpenLLM-Ro/ro_arc_challenge
54
+ metrics:
55
+ - name: Average accuracy
56
+ type: accuracy
57
+ value: 45.7
58
+ - task:
59
+ type: text-generation
60
+ dataset:
61
+ name: OpenLLM-Ro/ro_mmlu
62
+ type: OpenLLM-Ro/ro_mmlu
63
+ metrics:
64
+ - name: Average accuracy
65
+ type: accuracy
66
+ value: 40.36
67
+ - task:
68
+ type: text-generation
69
+ dataset:
70
+ name: OpenLLM-Ro/ro_winogrande
71
+ type: OpenLLM-Ro/ro_winogrande
72
+ metrics:
73
+ - name: Average accuracy
74
+ type: accuracy
75
+ value: 63.26
76
+ - task:
77
+ type: text-generation
78
+ dataset:
79
+ name: OpenLLM-Ro/ro_hellaswag
80
+ type: OpenLLM-Ro/ro_hellaswag
81
+ metrics:
82
+ - name: Average accuracy
83
+ type: accuracy
84
+ value: 60.25
85
+ - task:
86
+ type: text-generation
87
+ dataset:
88
+ name: OpenLLM-Ro/ro_gsm8k
89
+ type: OpenLLM-Ro/ro_gsm8k
90
+ metrics:
91
+ - name: Average accuracy
92
+ type: accuracy
93
+ value: 18.02
94
+ - task:
95
+ type: text-generation
96
+ dataset:
97
+ name: OpenLLM-Ro/ro_truthfulqa
98
+ type: OpenLLM-Ro/ro_truthfulqa
99
+ metrics:
100
+ - name: Average accuracy
101
+ type: accuracy
102
+ value: 45.48
103
+ - task:
104
+ type: text-generation
105
+ dataset:
106
+ name: LaRoSeDa_binary
107
+ type: LaRoSeDa_binary
108
+ metrics:
109
+ - name: Average macro-f1
110
+ type: macro-f1
111
+ value: 97.6
112
+ - task:
113
+ type: text-generation
114
+ dataset:
115
+ name: LaRoSeDa_multiclass
116
+ type: LaRoSeDa_multiclass
117
+ metrics:
118
+ - name: Average macro-f1
119
+ type: macro-f1
120
+ value: 60.22
121
+ - task:
122
+ type: text-generation
123
+ dataset:
124
+ name: WMT_EN-RO
125
+ type: WMT_EN-RO
126
+ metrics:
127
+ - name: Average bleu
128
+ type: bleu
129
+ value: 27.21
130
+ - task:
131
+ type: text-generation
132
+ dataset:
133
+ name: WMT_RO-EN
134
+ type: WMT_RO-EN
135
+ metrics:
136
+ - name: Average bleu
137
+ type: bleu
138
+ value: 22.15
139
+ - task:
140
+ type: text-generation
141
+ dataset:
142
+ name: XQuAD
143
+ type: XQuAD
144
+ metrics:
145
+ - name: Average exact_match
146
+ type: exact_match
147
+ value: 47.39
148
+ - task:
149
+ type: text-generation
150
+ dataset:
151
+ name: XQuAD
152
+ type: XQuAD
153
+ metrics:
154
+ - name: Average f1
155
+ type: f1
156
+ value: 65.77
157
+ - task:
158
+ type: text-generation
159
+ dataset:
160
+ name: STS
161
+ type: STS
162
+ metrics:
163
+ - name: Average spearman
164
+ type: spearman
165
+ value: 59.05
166
+ - task:
167
+ type: text-generation
168
+ dataset:
169
+ name: STS
170
+ type: STS
171
+ metrics:
172
+ - name: Average pearson
173
+ type: pearson
174
+ value: 56.45
175
+ - task:
176
+ type: text-generation
177
+ dataset:
178
+ name: RoMT-Bench
179
+ type: RoMT-Bench
180
+ metrics:
181
+ - name: First turn
182
+ type: Score
183
+ value: 5.56
184
+ - name: Second turn
185
+ type: Score
186
+ value: 4.39
187
+ - task:
188
+ type: text-generation
189
+ dataset:
190
+ name: OpenLLM-Ro/ro_arc_challenge
191
+ type: OpenLLM-Ro/ro_arc_challenge
192
+ metrics:
193
+ - name: 0-shot
194
+ type: accuracy
195
+ value: 43.02
196
+ - name: 1-shot
197
+ type: accuracy
198
+ value: 45.84
199
+ - name: 3-shot
200
+ type: accuracy
201
+ value: 45.24
202
+ - name: 5-shot
203
+ type: accuracy
204
+ value: 46.19
205
+ - name: 10-shot
206
+ type: accuracy
207
+ value: 46.7
208
+ - name: 25-shot
209
+ type: accuracy
210
+ value: 47.22
211
+ - task:
212
+ type: text-generation
213
+ dataset:
214
+ name: OpenLLM-Ro/ro_mmlu
215
+ type: OpenLLM-Ro/ro_mmlu
216
+ metrics:
217
+ - name: 0-shot
218
+ type: accuracy
219
+ value: 38.64
220
+ - name: 1-shot
221
+ type: accuracy
222
+ value: 40.77
223
+ - name: 3-shot
224
+ type: accuracy
225
+ value: 41.19
226
+ - name: 5-shot
227
+ type: accuracy
228
+ value: 40.86
229
+ - task:
230
+ type: text-generation
231
+ dataset:
232
+ name: OpenLLM-Ro/ro_winogrande
233
+ type: OpenLLM-Ro/ro_winogrande
234
+ metrics:
235
+ - name: 0-shot
236
+ type: accuracy
237
+ value: 63.61
238
+ - name: 1-shot
239
+ type: accuracy
240
+ value: 62.75
241
+ - name: 3-shot
242
+ type: accuracy
243
+ value: 63.46
244
+ - name: 5-shot
245
+ type: accuracy
246
+ value: 63.22
247
+ - task:
248
+ type: text-generation
249
+ dataset:
250
+ name: OpenLLM-Ro/ro_hellaswag
251
+ type: OpenLLM-Ro/ro_hellaswag
252
+ metrics:
253
+ - name: 0-shot
254
+ type: accuracy
255
+ value: 59.79
256
+ - name: 1-shot
257
+ type: accuracy
258
+ value: 59.62
259
+ - name: 3-shot
260
+ type: accuracy
261
+ value: 60.12
262
+ - name: 5-shot
263
+ type: accuracy
264
+ value: 60.71
265
+ - name: 10-shot
266
+ type: accuracy
267
+ value: 61.01
268
+ - task:
269
+ type: text-generation
270
+ dataset:
271
+ name: OpenLLM-Ro/ro_gsm8k
272
+ type: OpenLLM-Ro/ro_gsm8k
273
+ metrics:
274
+ - name: 1-shot
275
+ type: accuracy
276
+ value: 6.14
277
+ - name: 3-shot
278
+ type: accuracy
279
+ value: 22.52
280
+ - name: 5-shot
281
+ type: accuracy
282
+ value: 25.4
283
+ - task:
284
+ type: text-generation
285
+ dataset:
286
+ name: LaRoSeDa_binary
287
+ type: LaRoSeDa_binary
288
+ metrics:
289
+ - name: 0-shot
290
+ type: macro-f1
291
+ value: 98.17
292
+ - name: 1-shot
293
+ type: macro-f1
294
+ value: 96.3
295
+ - name: 3-shot
296
+ type: macro-f1
297
+ value: 97.8
298
+ - name: 5-shot
299
+ type: macro-f1
300
+ value: 98.13
301
+ - task:
302
+ type: text-generation
303
+ dataset:
304
+ name: LaRoSeDa_multiclass
305
+ type: LaRoSeDa_multiclass
306
+ metrics:
307
+ - name: 0-shot
308
+ type: macro-f1
309
+ value: 49.8
310
+ - name: 1-shot
311
+ type: macro-f1
312
+ value: 56.03
313
+ - name: 3-shot
314
+ type: macro-f1
315
+ value: 65.33
316
+ - name: 5-shot
317
+ type: macro-f1
318
+ value: 69.7
319
+ - task:
320
+ type: text-generation
321
+ dataset:
322
+ name: WMT_EN-RO
323
+ type: WMT_EN-RO
324
+ metrics:
325
+ - name: 0-shot
326
+ type: bleu
327
+ value: 19.34
328
+ - name: 1-shot
329
+ type: bleu
330
+ value: 29.89
331
+ - name: 3-shot
332
+ type: bleu
333
+ value: 29.99
334
+ - name: 5-shot
335
+ type: bleu
336
+ value: 29.62
337
+ - task:
338
+ type: text-generation
339
+ dataset:
340
+ name: WMT_RO-EN
341
+ type: WMT_RO-EN
342
+ metrics:
343
+ - name: 0-shot
344
+ type: bleu
345
+ value: 2.29
346
+ - name: 1-shot
347
+ type: bleu
348
+ value: 14.74
349
+ - name: 3-shot
350
+ type: bleu
351
+ value: 34.82
352
+ - name: 5-shot
353
+ type: bleu
354
+ value: 36.75
355
+ - task:
356
+ type: text-generation
357
+ dataset:
358
+ name: XQuAD_EM
359
+ type: XQuAD_EM
360
+ metrics:
361
+ - name: 0-shot
362
+ type: exact_match
363
+ value: 42.86
364
+ - name: 1-shot
365
+ type: exact_match
366
+ value: 47.82
367
+ - name: 3-shot
368
+ type: exact_match
369
+ value: 48.32
370
+ - name: 5-shot
371
+ type: exact_match
372
+ value: 50.59
373
+ - task:
374
+ type: text-generation
375
+ dataset:
376
+ name: XQuAD_F1
377
+ type: XQuAD_F1
378
+ metrics:
379
+ - name: 0-shot
380
+ type: f1
381
+ value: 63.66
382
+ - name: 1-shot
383
+ type: f1
384
+ value: 65.27
385
+ - name: 3-shot
386
+ type: f1
387
+ value: 66.04
388
+ - name: 5-shot
389
+ type: f1
390
+ value: 68.12
391
+ - task:
392
+ type: text-generation
393
+ dataset:
394
+ name: STS_Spearman
395
+ type: STS_Spearman
396
+ metrics:
397
+ - name: 1-shot
398
+ type: spearman
399
+ value: 54.51
400
+ - name: 3-shot
401
+ type: spearman
402
+ value: 60.98
403
+ - name: 5-shot
404
+ type: spearman
405
+ value: 61.65
406
+ - task:
407
+ type: text-generation
408
+ dataset:
409
+ name: STS_Pearson
410
+ type: STS_Pearson
411
+ metrics:
412
+ - name: 1-shot
413
+ type: pearson
414
+ value: 54.35
415
+ - name: 3-shot
416
+ type: pearson
417
+ value: 57.88
418
+ - name: 5-shot
419
+ type: pearson
420
+ value: 57.13
421
+ ---
422
+
423
+ # Model Card for Model ID
424
+
425
+ <!-- Provide a quick summary of what the model is/does. -->
426
+ This model points/is identical to [RoLlama2-7b-Instruct-2025-04-23](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct-2025-04-23).
427
+
428
+
429
+ RoLlama2 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 7B model**. Links to other models can be found at the bottom of this page.
430
+
431
+ ## Model Details
432
+
433
+ ### Model Description
434
+
435
+ <!-- Provide a longer summary of what this model is. -->
436
+ OpenLLM represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
437
+
438
+
439
+ - **Developed by:** OpenLLM-Ro
440
+ <!-- - **Funded by [optional]:** [More Information Needed] -->
441
+ <!-- - **Shared by [optional]:** [More Information Needed] -->
442
+ <!-- - **Model type:** [More Information Needed] -->
443
+ - **Language(s):** Romanian
444
+ - **License:** cc-by-nc-4.0
445
+ - **Finetuned from model:** [RoLlama2-7b-Base](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Base)
446
+ - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat), [RoMagpiePro](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_mt), [RoMagpieReasoning](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_reasoning)
447
+
448
+
449
+ ### Model Sources
450
+
451
+ <!-- Provide the basic links for the model. -->
452
+
453
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
454
+ - **Paper:** https://arxiv.org/abs/2406.18266
455
+
456
+ ## Intended Use
457
+
458
+ ### Intended Use Cases
459
+
460
+ RoLlama2 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
461
+
462
+ ### Out-of-Scope Use
463
+
464
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
465
+
466
+ Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
467
+
468
+
469
+
470
+ ## How to Get Started with the Model
471
+
472
+ Use the code below to get started with the model.
473
+
474
+ ```python
475
+ from transformers import AutoTokenizer, AutoModelForCausalLM
476
+
477
+ tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama2-7b-Instruct")
478
+ model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama2-7b-Instruct")
479
+
480
+ instruction = "Care este cel mai înalt vârf muntos din România?"
481
+ chat = [
482
+ {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
483
+ {"role": "user", "content": instruction},
484
+ ]
485
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False)
486
+
487
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
488
+ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
489
+ print(tokenizer.decode(outputs[0]))
490
+ ```
491
+
492
+ ## Academic Benchmarks
493
+
494
+ <table>
495
+ <tbody>
496
+ <tr>
497
+ <td><strong>Model</strong></td>
498
+ <td><strong><center>Average</center></strong></td>
499
+ <td><strong><center>ARC</center></strong></td>
500
+ <td><strong><center>MMLU</center></strong></td>
501
+ <td><strong><center>Winogrande</center></strong></td>
502
+ <td><strong><center>Hellaswag</center></strong></td>
503
+ <td><strong><center>GSM8k</center></strong></td>
504
+ <td><strong><center>TruthfulQA</center></strong></td>
505
+ </tr>
506
+ <tr>
507
+ <td>Llama-2-7b-chat</td><td><center>36.84</center></td><td><center>37.03</center></td><td><center>33.80</center></td><td><center>55.87</center></td><td><center>45.36</center></td><td><center>4.90</center></td><td><center>44.09</center></td>
508
+ </tr>
509
+ <tr>
510
+ <td>RoLlama2-7b-Instruct-2024-05-14</td><td><center>45.71</center></td><td><center>43.66</center></td><td><center>39.70</center></td><td><center><strong>70.34</strong></center></td><td><center>57.36</center></td><td><center><strong>18.78</strong></center></td><td><center>44.44</center></td>
511
+ </tr>
512
+ <tr>
513
+ <td>RoLlama2-7b-Instruct-2024-10-09</td><td><center>44.50</center></td><td><center>44.73</center></td><td><center>40.39</center></td><td><center>63.67</center></td><td><center>59.12</center></td><td><center>13.29</center></td><td><center>45.78</center></td>
514
+ </tr>
515
+ <tr>
516
+ <td><em>RoLlama2-7b-Instruct-2025-04-23</em></td><td><center><em>45.51</em></center></td><td><center><em>45.70</em></center></td><td><center><em>40.36</em></center></td><td><center><em>63.26</em></center></td><td><center><em>60.25</em></center></td><td><center><em>18.02</em></center></td><td><center><em>45.48</em></center></td>
517
+ </tr>
518
+ <tr>
519
+ <td>RoLlama2-7b-Instruct-DPO-2024-10-09</td><td><center>43.20</center></td><td><center>44.24</center></td><td><center>38.39</center></td><td><center>62.57</center></td><td><center>59.20</center></td><td><center>15.72</center></td><td><center>39.07</center></td>
520
+ </tr>
521
+ <tr>
522
+ <td>RoLlama2-7b-Instruct-DPO-2025-04-23</td><td><center><strong>46.77</strong></center></td><td><center><strong>48.16</strong></center></td><td><center><strong>41.38</strong></center></td><td><center>64.15</center></td><td><center><strong>61.37</strong></center></td><td><center>18.35</center></td><td><center><strong>47.20</strong></center></td>
523
+ </tr>
524
+ </tbody>
525
+ </table>
526
+
527
+ ## Downstream tasks
528
+
529
+
530
+ <table>
531
+ <tbody>
532
+ <tr>
533
+ <td></td>
534
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
535
+ <td colspan="4"><center><strong>WMT</strong></center></td>
536
+ </tr>
537
+ <tr>
538
+ <td></td>
539
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
540
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
541
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
542
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
543
+ </tr>
544
+ <tr>
545
+ <td><strong>Model</strong></td>
546
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
547
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
548
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
549
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
550
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
551
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
552
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
553
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
554
+ </tr>
555
+ <tr>
556
+ <td>Llama-2-7b-chat</td><td><center>87.78</center></td><td><center>52.81</center></td><td><center>97.27</center></td><td><center>82.02</center></td><td><center>15.55</center></td><td><center><strong>28.53</strong></center></td><td><center>19.99</center></td><td><center>31.48</center></td>
557
+ </tr>
558
+ <tr>
559
+ <td>RoLlama2-7b-Instruct-2024-05-14</td><td><center>97.48</center></td><td><center><strong>65.26</strong></center></td><td><center><strong>98.83</strong></center></td><td><center><strong>87.28</strong></center></td><td><center><strong>27.38</strong></center></td><td><center>10.32</center></td><td><center>27.59</center></td><td><center><strong>40.13</strong></center></td>
560
+ </tr>
561
+ <tr>
562
+ <td>RoLlama2-7b-Instruct-2024-10-09</td><td><center>97.66</center></td><td><center>62.41</center></td><td><center>97.97</center></td><td><center>60.89</center></td><td><center>27.13</center></td><td><center>19.39</center></td><td><center><strong>27.63</strong></center></td><td><center>39.75</center></td>
563
+ </tr>
564
+ <tr>
565
+ <td><em>RoLlama2-7b-Instruct-2025-04-23</em></td><td><center><em>97.60</em></center></td><td><center><em>60.22</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>27.21</em></center></td><td><center><em>22.15</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
566
+ </tr>
567
+ <tr>
568
+ <td>RoLlama2-7b-Instruct-DPO-2024-10-09</td><td><center>97.31</center></td><td><center>60.56</center></td><td><center>-</center></td><td><center>-</center></td><td><center>26.56</center></td><td><center>21.68</center></td><td><center>-</center></td><td><center>-</center></td>
569
+ </tr>
570
+ <tr>
571
+ <td>RoLlama2-7b-Instruct-DPO-2025-04-23</td><td><center><strong>97.77</strong></center></td><td><center>65.21</center></td><td><center>-</center></td><td><center>-</center></td><td><center>25.48</center></td><td><center>22.75</center></td><td><center>-</center></td><td><center>-</center></td>
572
+ </tr>
573
+ </tbody>
574
+ </table>
575
+
576
+
577
+ <table>
578
+ <tbody>
579
+ <tr>
580
+ <td></td>
581
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
582
+ <td colspan="4"><center><strong>STS</strong></center></td>
583
+ </tr>
584
+ <tr>
585
+ <td></td>
586
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
587
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
588
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
589
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
590
+ </tr>
591
+ <tr>
592
+ <td><strong>Model</strong></td>
593
+ <td><center><strong>(EM)</strong></center></td>
594
+ <td><center><strong>(F1)</strong></center></td>
595
+ <td><center><strong>(EM)</strong></center></td>
596
+ <td><center><strong>(F1)</strong></center></td>
597
+ <td><center><strong>(Spearman)</strong></center></td>
598
+ <td><center><strong>(Pearson)</strong></center></td>
599
+ <td><center><strong>(Spearman)</strong></center></td>
600
+ <td><center><strong>(Pearson)</strong></center></td>
601
+ </tr>
602
+ <tr>
603
+ <td>Llama-2-7b-chat</td><td><center>32.35</center></td><td><center>54.00</center></td><td><center><strong>60.34</strong></center></td><td><center><strong>75.98</strong></center></td><td><center>32.56</center></td><td><center>31.99</center></td><td><center>74.08</center></td><td><center>72.64</center></td>
604
+ </tr>
605
+ <tr>
606
+ <td>RoLlama2-7b-Instruct-2024-05-14</td><td><center>44.52</center></td><td><center>64.75</center></td><td><center>54.96</center></td><td><center>70.20</center></td><td><center>65.50</center></td><td><center><strong>67.79</strong></center></td><td><center>84.44</center></td><td><center>84.76</center></td>
607
+ </tr>
608
+ <tr>
609
+ <td>RoLlama2-7b-Instruct-2024-10-09</td><td><center>45.71</center></td><td><center>65.08</center></td><td><center>59.24</center></td><td><center>74.25</center></td><td><center>59.69</center></td><td><center>57.16</center></td><td><center><strong>84.66</strong></center></td><td><center><strong>85.07</strong></center></td>
610
+ </tr>
611
+ <tr>
612
+ <td><em>RoLlama2-7b-Instruct-2025-04-23</em></td><td><center><em><strong>47.39</strong></em></center></td><td><center><em><strong>65.77</strong></em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>59.05</em></center></td><td><center><em>56.45</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
613
+ </tr>
614
+ <tr>
615
+ <td>RoLlama2-7b-Instruct-DPO-2024-10-09</td><td><center>35.78</center></td><td><center>59.31</center></td><td><center>-</center></td><td><center>-</center></td><td><center>61.22</center></td><td><center>58.41</center></td><td><center>-</center></td><td><center>-</center></td>
616
+ </tr>
617
+ <tr>
618
+ <td>RoLlama2-7b-Instruct-DPO-2025-04-23</td><td><center>38.28</center></td><td><center>60.88</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>66.76</strong></center></td><td><center>64.72</center></td><td><center>-</center></td><td><center>-</center></td>
619
+ </tr>
620
+ </tbody>
621
+ </table>
622
+
623
+
624
+ ## Romanian MT-Bench
625
+
626
+ <table>
627
+ <tbody>
628
+ <tr>
629
+ <td><strong>Model</strong></td>
630
+ <td><strong><center>Average</center></strong></td>
631
+ <td><strong><center>1st turn</center></strong></td>
632
+ <td><strong><center>2nd turn</center></strong></td>
633
+ <td><strong><center>Answers in Ro</center></strong></td>
634
+ </tr>
635
+ <tr>
636
+ <td>Llama-2-7b-chat</td><td><center>1.08</center></td><td><center>1.44</center></td><td><center>0.73</center></td><td><center>45/160</center></td>
637
+ </tr>
638
+ <tr>
639
+ <td>RoLlama2-7b-Instruct-2024-05-14</td><td><center>3.86</center></td><td><center>4.67</center></td><td><center>3.04</center></td><td><center><strong>160/160</strong></center></td>
640
+ </tr>
641
+ <tr>
642
+ <td>RoLlama2-7b-Instruct-2024-10-09</td><td><center>4.43</center></td><td><center>4.92</center></td><td><center>3.94</center></td><td><center><strong>160/160</strong></center></td>
643
+ </tr>
644
+ <tr>
645
+ <td><em>RoLlama2-7b-Instruct-2025-04-23</em></td><td><center><em>4.97</em></center></td><td><center><em>5.56</em></center></td><td><center><em>4.39</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
646
+ </tr>
647
+ <tr>
648
+ <td>RoLlama2-7b-Instruct-DPO-2024-10-09</td><td><center>4.61</center></td><td><center>5.15</center></td><td><center>4.06</center></td><td><center><strong>160/160</strong></center></td>
649
+ </tr>
650
+ <tr>
651
+ <td>RoLlama2-7b-Instruct-DPO-2025-04-23</td><td><center><strong>5.55</strong></center></td><td><center><strong>5.84</strong></center></td><td><center><strong>5.26</strong></center></td><td><center><strong>160/160</strong></center></td>
652
+ </tr>
653
+ </tbody>
654
+ </table>
655
+
656
+
657
+ ## RoCulturaBench
658
+
659
+
660
+ <table>
661
+ <tbody>
662
+ <tr>
663
+ <td><strong>Model</strong></td>
664
+ <td><strong><center>Average</center></strong></td>
665
+ <td><strong><center>Answers in Ro</center></strong></td>
666
+ </tr>
667
+ <tr>
668
+ <td>Llama-2-7b-chat</td><td><center>1.21</center></td><td><center>33/100</center></td>
669
+ </tr>
670
+ <tr>
671
+ <td>RoLlama2-7b-Instruct-2024-05-14</td><td><center>3.77</center></td><td><center><strong>100/100</strong></center></td>
672
+ </tr>
673
+ <tr>
674
+ <td>RoLlama2-7b-Instruct-2024-10-09</td><td><center>4.08</center></td><td><center><strong>100/100</strong></center></td>
675
+ </tr>
676
+ <tr>
677
+ <td><em>RoLlama2-7b-Instruct-2025-04-23</em></td><td><center><em>4.56</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
678
+ </tr>
679
+ <tr>
680
+ <td>RoLlama2-7b-Instruct-DPO-2024-10-09</td><td><center>4.80</center></td><td><center><strong>100/100</strong></center></td>
681
+ </tr>
682
+ <tr>
683
+ <td>RoLlama2-7b-Instruct-DPO-2025-04-23</td><td><center><strong>5.24</strong></center></td><td><center><strong>100/100</strong></center></td>
684
+ </tr>
685
+ </tbody>
686
+ </table>
687
+
688
+
689
+
690
+
691
+
692
+ ## RoLlama2 Model Family
693
+
694
+ | Model | Link |
695
+ |--------------------|:--------:|
696
+ |RoLlama2-7b-Base-2024-05-14 | [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Base-2024-05-14) |
697
+ |RoLlama2-7b-Instruct-2024-05-14 | [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct-2024-05-14) |
698
+ |RoLlama2-7b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct-2024-10-09) |
699
+ |*RoLlama2-7b-Instruct-2025-04-23*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct-2025-04-23) |
700
+ |RoLlama2-7b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct-DPO-2024-10-09) |
701
+ |RoLlama2-7b-Instruct-DPO-2025-04-23| [link](https://huggingface.co/OpenLLM-Ro/RoLlama2-7b-Instruct-DPO-2025-04-23) |
702
+
703
+
704
+
705
+ ## Citation
706
+
707
+ ```
708
+ @misc{masala2024vorbecstiromanecsterecipetrain,
709
+ title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
710
+ author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
711
+ year={2024},
712
+ eprint={2406.18266},
713
+ archivePrefix={arXiv},
714
+ primaryClass={cs.CL},
715
+ url={https://arxiv.org/abs/2406.18266},
716
+ }
717
+ ```
718
+ <!-- **APA:**
719
+
720
  [More Information Needed] -->