from transformers import AutoConfig from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class HCXVisionConfig(PretrainedConfig): model_type = "hyperclovax_vlm" keys_to_ignore_at_inference = ["past_key_values"] # The `gpt2` class has a different name, so it needs to be updated accordingly. text_config_attribute_map = { "n_embd": "hidden_size", "n_positions": "max_position_embeddings", "n_head": "num_attention_heads", "n_layer": "num_hidden_layers", } def __init__( self, text_config=None, vision_config=None, use_nth_layer=-2, img_start_id=100009, # <|dummy3|> decoder_max_length=4096, anyres=False, unpad=False, max_num_grids=-1, num_queries_vis_abstractor=-1, ignore_index=-100, proj_pos_emb=True, proj_prenorm=False, use_1x1_grid=False, **kwargs, ): for key, val in self.text_config_attribute_map.items(): if text_config is not None and key in text_config: text_config[val] = text_config.pop(key) if text_config is not None: _text_config = AutoConfig.for_model(text_config["model_type"]) self.text_config = _text_config.from_dict(text_config) # In DeepSpeed ZeRO-3, the memory size is automatically determined based on the `hidden_size` specified in the config. self.hidden_size = text_config["hidden_size"] if "hidden_size" in text_config else text_config["n_embd"] if vision_config is not None: _vision_config = AutoConfig.for_model(vision_config["model_type"]) self.vision_config = _vision_config.from_dict(vision_config) # add VLM configs self.use_nth_layer = use_nth_layer self.decoder_max_length = decoder_max_length self.anyres = anyres self.unpad = unpad self.max_num_grids = max_num_grids self.num_queries_vis_abstractor = num_queries_vis_abstractor self.img_start_id = img_start_id self.ignore_index = ignore_index self.proj_pos_emb = proj_pos_emb self.proj_prenorm = proj_prenorm self.use_1x1_grid = use_1x1_grid super().__init__(**kwargs) def get_text_config(self, decoder=False): return self.text_config