lixinhao's picture
Upload folder using huggingface_hub
16438b2 verified
import math
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from functools import partial
from einops import rearrange
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from typing import Optional, Tuple, Union, Dict
from functools import partial, reduce
from PIL import Image
from torch import nn
from transformers.image_processing_utils import BatchFeature, get_size_dict
from transformers.image_transforms import (
convert_to_rgb,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from transformers.image_utils import (
ChannelDimension,
PILImageResampling,
to_numpy_array,
)
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
from flash_attn.bert_padding import unpad_input, pad_input
class FlashAttention(nn.Module):
"""Implement the scaled dot product attention with softmax.
Arguments
---------
softmax_scale: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
super().__init__()
self.softmax_scale = softmax_scale
self.dropout_p = attention_dropout
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
max_s=None, need_weights=False):
"""Implements the multihead softmax attention.
Arguments
---------
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
if unpadded: (nnz, 3, h, d)
key_padding_mask: a bool tensor of shape (B, S)
"""
assert not need_weights
assert qkv.dtype in [torch.float16, torch.bfloat16]
assert qkv.is_cuda
if cu_seqlens is None:
batch_size = qkv.shape[0]
seqlen = qkv.shape[1]
if key_padding_mask is None:
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
max_s = seqlen
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
device=qkv.device)
output = flash_attn_varlen_qkvpacked_func(
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
softmax_scale=self.softmax_scale, causal=causal
)
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
else:
nheads = qkv.shape[-2]
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
output_unpad = flash_attn_varlen_qkvpacked_func(
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
softmax_scale=self.softmax_scale, causal=causal
)
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
indices, batch_size, seqlen),
'b s (h d) -> b s h d', h=nheads)
else:
assert max_s is not None
output = flash_attn_varlen_qkvpacked_func(
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
softmax_scale=self.softmax_scale, causal=causal
)
return output, None
# --------------------------------------------------------
# 2D sine-cosine position embedding
# References:
# Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py
# MoCo v3: https://github.com/facebookresearch/moco-v3
# --------------------------------------------------------
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
"""
grid_size: int of the grid height and width
return:
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
grid_h = np.arange(grid_size, dtype=np.float32)
grid_w = np.arange(grid_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size, grid_size])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token:
pos_embed = np.concatenate(
[np.zeros([1, embed_dim]), pos_embed], axis=0
)
return pos_embed
def get_1d_sincos_pos_embed(embed_dim, t_size, cls_token=False):
"""
t_size: int of the temporal size
return:
pos_embed: [t_size, embed_dim] or [1+t_size, embed_dim] (w/ or w/o cls_token)
"""
grid_t = np.arange(t_size, dtype=np.float32)
pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, grid_t)
if cls_token:
pos_embed = np.concatenate(
[np.zeros([1, embed_dim]), pos_embed], axis=0
)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(
embed_dim // 2, grid[0]
) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(
embed_dim // 2, grid[1]
) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float32)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
# --------------------------------------------------------
# 3D sine-cosine position embedding
# References:
# MVD: https://github.com/ruiwang2021/mvd/blob/main/modeling_finetune.py
# --------------------------------------------------------
def get_3d_sincos_pos_embed(embed_dim, grid_size, t_size, cls_token=False):
"""
grid_size: int of the grid height and width
t_size: int of the temporal size
return:
pos_embed: [t_size*grid_size*grid_size, embed_dim] or [1+t_size*grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
assert embed_dim % 4 == 0
embed_dim_spatial = embed_dim // 4 * 3
embed_dim_temporal = embed_dim // 4
# spatial
grid_h = np.arange(grid_size, dtype=np.float32)
grid_w = np.arange(grid_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size, grid_size])
pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(
embed_dim_spatial, grid
)
# temporal
grid_t = np.arange(t_size, dtype=np.float32)
pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(
embed_dim_temporal, grid_t
)
# concate: [T, H, W] order
pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :]
pos_embed_temporal = np.repeat(
pos_embed_temporal, grid_size**2, axis=1
) # [T, H*W, D // 4]
pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :]
pos_embed_spatial = np.repeat(
pos_embed_spatial, t_size, axis=0
) # [T, H*W, D // 4 * 3]
pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1)
pos_embed = pos_embed.reshape([-1, embed_dim]) # [T*H*W, D]
if cls_token:
pos_embed = np.concatenate(
[np.zeros([1, embed_dim]), pos_embed], axis=0
)
return pos_embed
class RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class LayerScale(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False, force_fp32=False):
super().__init__()
self.inplace = inplace
self.weight = nn.Parameter(init_values * torch.ones(dim))
self.force_fp32 = force_fp32
@torch.cuda.amp.autocast(enabled=False)
def forward(self, x):
if self.force_fp32:
output_type = x.dtype
out = x.float().mul_(self.weight.float()) if self.inplace else x.float() * self.weight.float()
return out.to(dtype=output_type)
else:
out = x.mul_(self.weight) if self.inplace else x * self.weight
return out
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., use_flash_attn=False,
causal=False, norm_layer=nn.LayerNorm, qk_normalization=False, use_fused_rmsnorm=False):
super().__init__()
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.use_flash_attn = use_flash_attn
if use_flash_attn:
self.causal = causal
self.inner_attn = FlashAttention(attention_dropout=attn_drop)
self.qk_normalization = qk_normalization
self.q_norm = norm_layer(dim) if qk_normalization else nn.Identity()
self.k_norm = norm_layer(dim) if qk_normalization else nn.Identity()
self.use_fused_rmsnorm = use_fused_rmsnorm
def _naive_attn(self, x):
B, N, C = x.shape
# print(x.shape, torch.cuda.memory_allocated(), torch.cuda.memory_allocated())
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
if self.qk_normalization:
B_, H_, N_, D_ = q.shape
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
attn = ((q * self.scale) @ k.transpose(-2, -1))
# attn = attn - attn.max(-1)[0].unsqueeze(-1) # in case of overflow for fp16
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
# print(torch.cuda.memory_allocated(), torch.cuda.memory_allocated())
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
# print(f"\033[31m这{x.device}是{self.proj.weight.device} {self.proj.bias.device}\033[0m")
# print(f"\033[31m类型{x.dtype}是{self.proj.weight.dtype} {self.proj.bias.dtype}\033[0m")
x = self.proj(x)
x = self.proj_drop(x)
return x
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
qkv = self.qkv(x)
qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads)
if self.qk_normalization:
q, k, v = qkv.unbind(2)
if self.use_fused_rmsnorm:
q = self.q_norm(q.flatten(-2, -1))[0].view(q.shape)
k = self.k_norm(k.flatten(-2, -1))[0].view(k.shape)
else:
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
qkv = torch.stack([q, k, v], dim=2)
context, _ = self.inner_attn(
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal
)
outs = self.proj(rearrange(context, "b s h d -> b s (h d)"))
outs = self.proj_drop(outs)
return outs
def forward(self, x):
x = self._naive_attn(x) if not self.use_flash_attn else self._flash_attn(x)
return x
class Mlp(nn.Module):
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
"""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU,
bias=True, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
bias = to_2tuple(bias)
drop_probs = to_2tuple(drop)
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0])
self.act = act_layer()
self.drop1 = nn.Dropout(drop_probs[0])
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
self.drop2 = nn.Dropout(drop_probs[1])
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop1(x)
x = self.fc2(x)
x = self.drop2(x)
return x
class Block(nn.Module):
def __init__(
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flash_attn=False, use_fused_mlp=False,
fused_mlp_heuristic=1, with_cp=False, qk_normalization=False, layerscale_no_force_fp32=False,
use_fused_rmsnorm=False):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
use_flash_attn=use_flash_attn, causal=False, norm_layer=norm_layer,
qk_normalization=qk_normalization,
use_fused_rmsnorm=use_fused_rmsnorm)
self.ls1 = LayerScale(dim, init_values=init_values,
force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity()
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
if use_fused_mlp:
raise NotImplementedError
self.mlp = FusedMLP(in_features=dim, hidden_features=mlp_hidden_dim, heuristic=fused_mlp_heuristic)
else:
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.ls2 = LayerScale(dim, init_values=init_values,
force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.with_cp = with_cp
self.use_fused_rmsnorm = use_fused_rmsnorm
def forward(self, x, residual=None):
def _inner_forward(x, residual=None):
if self.use_fused_rmsnorm:
x, residual = self.norm1(x, residual)
x = self.drop_path1(self.ls1(self.attn(x)))
x, residual = self.norm2(x, residual)
x = self.drop_path2(self.ls2(self.mlp(x)))
return x, residual
else:
assert residual is None
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x))))
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
return x
if self.with_cp:
# print(f"\033[31m use_checkpoint [0m")
return checkpoint.checkpoint(_inner_forward, x, residual)
else:
return _inner_forward(x, residual=residual)
class PatchEmbed(nn.Module):
""" 3D Image to Patch Embedding
"""
def __init__(
self, img_size=224, patch_size=16, in_chans=3, embed_dim=768,
num_frames=8, tubelet_size=1, norm_layer=None
):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.grid_size = (
num_frames // tubelet_size,
img_size[0] // patch_size[0],
img_size[1] // patch_size[1]
) # (T, H, W)
self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
self.num_img_patches = self.grid_size[1] * self.grid_size[2]
self.proj = nn.Conv3d(
in_channels=in_chans, out_channels=embed_dim,
kernel_size=(tubelet_size, patch_size[0], patch_size[1]),
stride=(tubelet_size, patch_size[0], patch_size[1])
)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
x = self.proj(x)
x = x.flatten(3).permute(0, 2, 3, 1) # B x C x T x HW => B x T x HW x C
x = self.norm(x)
return x
class PretrainVisionTransformer_clean(nn.Module):
def __init__(
self,
in_chans: int = 3,
patch_size: int = 14,
img_size: int = 224,
qkv_bias: bool = False, # follow internvl_clip to set False
drop_path_rate: float = 0.25, # may need ablation
embed_dim: int = 1408,
num_heads: int = 16,
mlp_ratio: float = 48/11,
init_values: float = 1e-5, # may need ablation
qk_normalization: bool = True,
depth: int = 40,
use_flash_attn: bool = True,
use_fused_rmsnorm: bool = True,
use_fused_mlp: bool = True,
fused_mlp_heuristic: int = 1,
attn_pool_num_heads: int = 16,
clip_embed_dim: int = 768,
layerscale_no_force_fp32: bool = False, # whether True for training?
num_frames: int = 8,
tubelet_size: int = 1,
sep_pos_embed: bool = False,
sep_image_video_pos_embed: bool = False,
use_checkpoint: bool = False,
checkpoint_num: int = 0,
# for unmasked teacher
x_vis_return_idx=-1,
x_vis_only=False
):
super().__init__()
self.num_frames = num_frames
self.tubelet_size = tubelet_size
# assert use_flash_attn == use_fused_rmsnorm == use_fused_mlp, f'use_flash_attn:{use_flash_attn}, use_fused_rmsnorm{use_fused_rmsnorm} and use_fused_mlp{use_fused_mlp} should be consistent'
self.use_flash_attn = use_flash_attn
self.embed_dim = embed_dim
print(f"Origin depth: {depth}")
depth = depth + x_vis_return_idx + 1
print(f"New depth: {depth}")
self.depth = depth
self.x_vis_only = x_vis_only
if use_fused_rmsnorm:
raise NotImplementedError
norm_layer_for_blocks = partial(DropoutAddRMSNorm, eps=1e-6, prenorm=True)
else:
norm_layer_for_blocks = partial(RMSNorm, eps=1e-6)
self.norm_layer_for_blocks = norm_layer_for_blocks
self.patch_embed = PatchEmbed(
img_size, patch_size, in_chans, embed_dim,
num_frames=num_frames, tubelet_size=tubelet_size,
)
num_patches = self.patch_embed.num_patches
num_img_patches = self.patch_embed.num_img_patches
# print(f"num_patches: {num_patches}, num_img_patches: {num_img_patches}")
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
# stolen from https://github.com/facebookresearch/mae_st/blob/dc072aaaf640d06892e23a33b42223a994efe272/models_vit.py#L65-L73C17
self.sep_pos_embed = sep_pos_embed
self.sep_image_video_pos_embed = sep_image_video_pos_embed
if sep_pos_embed:
raise NotImplementedError
else:
if sep_image_video_pos_embed:
print("Use separate position embedding, for image and video we use different pos_embed.")
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.img_pos_embed = nn.Parameter(torch.zeros(1, num_img_patches + 1, embed_dim))
else:
print("Use joint position embedding, for image and video we use same pos_embed.")
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
# choose which layer to use checkpoint
with_cp_list = [False] * depth
if use_checkpoint:
for idx in range(depth):
if idx < checkpoint_num:
with_cp_list[idx] = True
print(f"Droppath rate: {dpr}")
print(f"Checkpoint list: {with_cp_list}")
self.blocks = nn.ModuleList([
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=qkv_bias,
norm_layer=norm_layer_for_blocks,
drop_path=dpr[i], init_values=init_values, attn_drop=0.,
use_flash_attn=use_flash_attn, use_fused_mlp=use_fused_mlp,
fused_mlp_heuristic=fused_mlp_heuristic,
with_cp=with_cp_list[i],
qk_normalization=qk_normalization,
layerscale_no_force_fp32=layerscale_no_force_fp32,
use_fused_rmsnorm=use_fused_rmsnorm)
for i in range(depth)])
if not self.x_vis_only:
raise NotImplementedError
self.init_pos_embed()
trunc_normal_(self.cls_token, std=.02) # NOTE 对chat没用,都要加载预训练的
self.apply(self._init_weights)
self.fix_init_weight()
def init_pos_embed(self):
print("Init pos_embed from sincos pos_embed")
if self.sep_pos_embed:
raise NotImplementedError
else:
pos_embed = get_3d_sincos_pos_embed(
self.pos_embed.shape[-1],
self.patch_embed.grid_size[1], # height & weight
self.patch_embed.grid_size[0], # t_size
cls_token=True
)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
if self.sep_image_video_pos_embed:
img_pos_embed = get_3d_sincos_pos_embed(
self.pos_embed.shape[-1],
self.patch_embed.grid_size[1], # height & weight
1,
cls_token=True
)
self.img_pos_embed.data.copy_(torch.from_numpy(img_pos_embed).float().unsqueeze(0))
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def fix_init_weight(self):
def rescale(param, layer_id):
param.div_(math.sqrt(2.0 * layer_id))
for layer_id, layer in enumerate(self.blocks):
rescale(layer.attn.proj.weight.data, layer_id + 1)
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
@property
def dtype(self):
return self.patch_embed.proj.weight.dtype
def get_num_layers(self):
return len(self.blocks)
@torch.jit.ignore
def no_weight_decay(self):
return {
'pos_embed',
'pos_embed_spatial',
'pos_embed_temporal',
'pos_embed_cls',
'img_pos_embed',
'cls_token'
}
# @torch.cuda.amp.autocast(enabled=False)
def forward(self, x, mask=None, use_image=False):
x = self.patch_embed(x.type(self.dtype))
# print(f"x.shape: {x.shape} x.dtype: {x.dtype}, model.dtype: {self.dtype}")
B, T, L, C = x.shape # T: temporal; L: spatial
x = x.view([B, T * L, C])
# append cls token
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# add pos_embed
if self.sep_pos_embed:
raise NotImplementedError
else:
if use_image:
if self.sep_image_video_pos_embed:
pos_embed = self.img_pos_embed
else:
# (1, num_img_patches + 1, embed_dim)
# print('origin pos_embed.shape:', self.pos_embed.shape)
cls_pos_embed = self.pos_embed[:, 0:1, :]
# print('cls_pos_embed.shape:', cls_pos_embed.shape)
img_pos_embed = self.pos_embed[:, 1:, :].view(1, self.num_frames, self.patch_embed.num_patches // self.num_frames, self.embed_dim).mean(dim=1)
# print('img_pos_embed.shape:', img_pos_embed.shape)
pos_embed = torch.cat([cls_pos_embed, img_pos_embed], dim=1)
# print('final img_pos_embed.shape:', pos_embed.shape)
else:
pos_embed = self.pos_embed
# print("pos_embed.shape:", pos_embed.shape)
x = x + pos_embed
# mask tokens, ~mask means visible
if mask is not None:
x = x[~mask].reshape(B, -1, C)
else:
x = x.reshape(B, -1, C)
residual = None
for idx, blk in enumerate(self.blocks):
if isinstance(x, tuple) and len(x) == 2:
x, residual = x
x = blk(x, residual=residual)
if isinstance(x, tuple) and len(x) == 2:
x, residual = x
if residual is not None:
x = x + residual
x_vis = x
if self.x_vis_only:
return x_vis
else:
x_pool_vis = self.clip_projector(x_vis)
return x_vis, x_pool_vis, None, None
class InternVideo2ImageProcessor:
def __init__(self, image_mean=(0.485, 0.456, 0.406), image_std=(0.229, 0.224, 0.225), size=(224, 224), crop_size: Dict[str, int] = None, resample=PILImageResampling.BICUBIC, rescale_factor=1 / 255, data_format=ChannelDimension.FIRST):
crop_size = crop_size if crop_size is not None else {"height": size[0], "width": size[1]}
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
self.image_mean = image_mean
self.image_std = image_std
self.size = size
self.resample = resample
self.rescale_factor = rescale_factor
self.data_format = data_format
self.crop_size = crop_size
def preprocess(self, images, return_tensors, target_size=None):
if isinstance(images, Image.Image):
images = [images]
else:
# to adapt video data
images = [to_numpy_array(image) for image in images]
assert isinstance(images, list)
if target_size is None:
target_size = self.size
transforms = [
convert_to_rgb,
to_numpy_array,
partial(resize, size=target_size, resample=self.resample, data_format=self.data_format),
partial(rescale, scale=self.rescale_factor, data_format=self.data_format),
partial(normalize, mean=self.image_mean, std=self.image_std, data_format=self.data_format),
partial(to_channel_dimension_format, channel_dim=self.data_format, input_channel_dim=self.data_format),
]
images = reduce(lambda x, f: [*map(f, x)], transforms, images)
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
class InternVideo2VisionConfig:
model_type = "internvideo2_vision_model"
def __init__(
self,
num_frames=4,
hidden_size=1408,
num_hidden_layers=40,
num_attention_heads=16,
num_channels=3,
image_size=224,
patch_size=14,
x_vis_return_idx=-2,
sep_image_video_pos_embed=True,
use_checkpoint=True,
checkpoint_num=40,
# **kwargs,
):
# super().__init__(**kwargs)
self.num_frames = num_frames
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.x_vis_return_idx = x_vis_return_idx
self.sep_image_video_pos_embed = sep_image_video_pos_embed
self.use_checkpoint = use_checkpoint
self.checkpoint_num = checkpoint_num
def build_vit(config, pt_type='origin'):
model = PretrainVisionTransformer_clean(
in_chans=config.num_channels, img_size=config.image_size, patch_size=config.patch_size,
embed_dim=config.hidden_size, depth=config.num_hidden_layers, num_heads=config.num_attention_heads, mlp_ratio=48/11,
# clip_embed_dim=config.vision_encoder.clip_embed_dim,
attn_pool_num_heads=16, qkv_bias=False,
drop_path_rate=0.25,
init_values=0.00001,
qk_normalization=True,
use_flash_attn=True,
use_fused_rmsnorm=False,
use_fused_mlp=False,
fused_mlp_heuristic=1,
layerscale_no_force_fp32=False,
num_frames=config.num_frames,
tubelet_size=1,
sep_pos_embed=False,
sep_image_video_pos_embed=config.sep_image_video_pos_embed,
use_checkpoint=config.use_checkpoint,
checkpoint_num=config.checkpoint_num,
x_vis_return_idx=config.x_vis_return_idx,
x_vis_only=True
)
if config.num_frames != 4:
raise NotImplementedError
return model
class InternVideo2VisionTower(nn.Module):
def __init__(self, vision_tower, vision_tower_cfg, delay_load=False, pt_type='origin', image_size=224):
super().__init__()
self.is_loaded = False
self.pt_type = pt_type
self.config = InternVideo2VisionConfig(num_frames=vision_tower_cfg.mm_local_num_frames, x_vis_return_idx=vision_tower_cfg.mm_vision_select_layer, image_size=image_size)
self.vision_tower_name = vision_tower
self.image_processor = InternVideo2ImageProcessor(size=(image_size, image_size))
if not delay_load:
print(f"Loading vision tower: {vision_tower}")
self.load_model()
elif getattr(vision_tower_cfg, "unfreeze_mm_vision_tower", False):
# TODO: better detector is needed.
print(f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True.")
self.load_model()
elif hasattr(vision_tower_cfg, "mm_tunable_parts") and "mm_vision_tower" in vision_tower_cfg.mm_tunable_parts:
print(f"The checkpoint seems to contain `vision_tower` weights: `mm_tunable_parts` contains `mm_vision_tower`.")
self.load_model()
else:
raise NotImplementedError
self.cfg_only = self.config
def load_model(self, device_map=None):
if self.is_loaded:
print("{} is already loaded, `load_model` called again, skipping.".format(self.vision_tower_name))
return
self.vision_tower = build_vit(self.config, pt_type=self.pt_type)
self.vision_tower.requires_grad_(False)
self.is_loaded = True
def forward(self, images):
if type(images) is list:
raise NotImplementedError
else:
# input: B T C H W
# output: B T*L C
T = images.shape[1]
images = images.permute(0, 2, 1, 3, 4)
image_embeds = self.vision_tower(images, use_image=(T == 1))
return image_embeds[:, 1:, :]
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
for p in self.vision_tower.parameters():
return p.dtype
@property
def device(self):
for p in self.vision_tower.parameters():
return p.device
@property
def hidden_size(self):
return self.config.hidden_size
@property
def num_patches(self):
return (self.config.image_size // self.config.patch_size) ** 2
@property
def num_patches_per_side(self):
return self.config.image_size // self.config.patch_size
@property
def image_size(self):
return self.config.image_size
def build_vision_tower(vision_tower_cfg, **kwargs):
vision_tower = getattr(vision_tower_cfg, "mm_vision_tower", getattr(vision_tower_cfg, "vision_tower", None))
return InternVideo2VisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, **kwargs)