Update README.md
Browse files
README.md
CHANGED
|
@@ -8,19 +8,76 @@ metrics:
|
|
| 8 |
tags:
|
| 9 |
- multimodal
|
| 10 |
pipeline_tag: video-text-to-text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
-
# π
|
| 14 |
<!-- [\[π° Blog\]](https://internvideo.github.io/blog/2024-12-31-VideoChat-Flash) -->
|
| 15 |
[\[π GitHub\]](https://github.com/OpenGVLab/InternVideo/tree/main/InternVideo2.5)
|
| 16 |
[\[π Tech Report\]](https://arxiv.org/abs/2501.12386)
|
| 17 |
<!-- [\[π¨οΈ Chat Demo\]](https://huggingface.co/spaces/OpenGVLab/VideoChat-Flash) -->
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
| 20 |
## π Performance
|
| 21 |
| Model | MVBench | LongVideoBench | VideoMME(w/o sub)|
|
| 22 |
| --- | --- | --- | --- |
|
| 23 |
-
|
|
| 24 |
|
| 25 |
## π How to use the model
|
| 26 |
|
|
@@ -35,16 +92,130 @@ pip install flash-attn --no-build-isolation
|
|
| 35 |
```
|
| 36 |
Then you could use our model:
|
| 37 |
```python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
from transformers import AutoModel, AutoTokenizer
|
| 39 |
|
|
|
|
| 40 |
# model setting
|
| 41 |
model_path = 'OpenGVLab/InternVL_2_5_HiCo_R16'
|
| 42 |
|
| 43 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 44 |
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda()
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
# evaluation setting
|
| 49 |
max_num_frames = 512
|
| 50 |
generation_config = dict(
|
|
@@ -54,20 +225,26 @@ generation_config = dict(
|
|
| 54 |
top_p=0.1,
|
| 55 |
num_beams=1
|
| 56 |
)
|
| 57 |
-
|
| 58 |
video_path = "your_video.mp4"
|
|
|
|
| 59 |
|
| 60 |
-
# single-turn conversation
|
| 61 |
-
question1 = "Describe this video in detail."
|
| 62 |
-
output1, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question1, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config)
|
| 63 |
-
|
| 64 |
-
print(output1)
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
```
|
| 72 |
|
| 73 |
## βοΈ Citation
|
|
@@ -80,4 +257,13 @@ print(output2)
|
|
| 80 |
journal={arXiv preprint arXiv:2501.12386},
|
| 81 |
year={2025}
|
| 82 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
```
|
|
|
|
| 8 |
tags:
|
| 9 |
- multimodal
|
| 10 |
pipeline_tag: video-text-to-text
|
| 11 |
+
model-index:
|
| 12 |
+
- name: InternVL2.5_HiCo_R16
|
| 13 |
+
results:
|
| 14 |
+
- task:
|
| 15 |
+
type: multimodal
|
| 16 |
+
dataset:
|
| 17 |
+
name: MLVU
|
| 18 |
+
type: mlvu
|
| 19 |
+
metrics:
|
| 20 |
+
- type: accuracy
|
| 21 |
+
value: 71.5
|
| 22 |
+
name: accuracy
|
| 23 |
+
verified: true
|
| 24 |
+
- task:
|
| 25 |
+
type: multimodal
|
| 26 |
+
dataset:
|
| 27 |
+
name: MVBench
|
| 28 |
+
type: mvbench
|
| 29 |
+
metrics:
|
| 30 |
+
- type: accuracy
|
| 31 |
+
value: 74.0
|
| 32 |
+
name: accuracy
|
| 33 |
+
verified: true
|
| 34 |
+
- task:
|
| 35 |
+
type: multimodal
|
| 36 |
+
dataset:
|
| 37 |
+
name: Perception Test
|
| 38 |
+
type: percepTest
|
| 39 |
+
metrics:
|
| 40 |
+
- type: accuracy
|
| 41 |
+
value: 71.4
|
| 42 |
+
name: accuracy
|
| 43 |
+
verified: true
|
| 44 |
+
- task:
|
| 45 |
+
type: multimodal
|
| 46 |
+
dataset:
|
| 47 |
+
name: LongVideoBench
|
| 48 |
+
type: longvideobench
|
| 49 |
+
metrics:
|
| 50 |
+
- type: accuracy
|
| 51 |
+
value: 59.6
|
| 52 |
+
name: accuracy
|
| 53 |
+
verified: true
|
| 54 |
+
- task:
|
| 55 |
+
type: multimodal
|
| 56 |
+
dataset:
|
| 57 |
+
name: VideoMME (w/o sub)
|
| 58 |
+
type: videomme
|
| 59 |
+
metrics:
|
| 60 |
+
- type: accuracy
|
| 61 |
+
value: 64.9
|
| 62 |
+
name: accuracy
|
| 63 |
+
verified: true
|
| 64 |
+
|
| 65 |
---
|
| 66 |
|
| 67 |
+
# πInternVL2.5_HiCo_R16β‘
|
| 68 |
<!-- [\[π° Blog\]](https://internvideo.github.io/blog/2024-12-31-VideoChat-Flash) -->
|
| 69 |
[\[π GitHub\]](https://github.com/OpenGVLab/InternVideo/tree/main/InternVideo2.5)
|
| 70 |
[\[π Tech Report\]](https://arxiv.org/abs/2501.12386)
|
| 71 |
<!-- [\[π¨οΈ Chat Demo\]](https://huggingface.co/spaces/OpenGVLab/VideoChat-Flash) -->
|
| 72 |
|
| 73 |
+
InternVideo2.5 is a video multimodal large language model (MLLM, built upoon InternVL2.5) enhanced with **long and rich context (LRC) modeling**. It significantly improves upon existing MLLMs by enhancing their ability to perceive fine-grained details and capture long-form temporal structures. We achieve this through dense vision task annotations using direct preference optimization (TPO) and compact spatiotemporal representations via adaptive hierarchical token compression (HiCo). This model is a variant of InternVideo2.5's ablation experiment, built on HiCo technology only (R16 means 16 tokens per frame).
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
|
| 77 |
## π Performance
|
| 78 |
| Model | MVBench | LongVideoBench | VideoMME(w/o sub)|
|
| 79 |
| --- | --- | --- | --- |
|
| 80 |
+
|InternVL2.5_HiCo_R16| 74.0 | 59.6 | 64.9|
|
| 81 |
|
| 82 |
## π How to use the model
|
| 83 |
|
|
|
|
| 92 |
```
|
| 93 |
Then you could use our model:
|
| 94 |
```python
|
| 95 |
+
import numpy as np
|
| 96 |
+
import torch
|
| 97 |
+
import torchvision.transforms as T
|
| 98 |
+
from decord import VideoReader, cpu
|
| 99 |
+
from PIL import Image
|
| 100 |
+
from torchvision.transforms.functional import InterpolationMode
|
| 101 |
from transformers import AutoModel, AutoTokenizer
|
| 102 |
|
| 103 |
+
|
| 104 |
# model setting
|
| 105 |
model_path = 'OpenGVLab/InternVL_2_5_HiCo_R16'
|
| 106 |
|
| 107 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 108 |
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda()
|
| 109 |
+
|
| 110 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
| 111 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
| 112 |
+
|
| 113 |
+
def build_transform(input_size):
|
| 114 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
| 115 |
+
transform = T.Compose([T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD)])
|
| 116 |
+
return transform
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
| 120 |
+
best_ratio_diff = float("inf")
|
| 121 |
+
best_ratio = (1, 1)
|
| 122 |
+
area = width * height
|
| 123 |
+
for ratio in target_ratios:
|
| 124 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
| 125 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
| 126 |
+
if ratio_diff < best_ratio_diff:
|
| 127 |
+
best_ratio_diff = ratio_diff
|
| 128 |
+
best_ratio = ratio
|
| 129 |
+
elif ratio_diff == best_ratio_diff:
|
| 130 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
| 131 |
+
best_ratio = ratio
|
| 132 |
+
return best_ratio
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
|
| 136 |
+
orig_width, orig_height = image.size
|
| 137 |
+
aspect_ratio = orig_width / orig_height
|
| 138 |
+
|
| 139 |
+
# calculate the existing image aspect ratio
|
| 140 |
+
target_ratios = set((i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num)
|
| 141 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
| 142 |
+
|
| 143 |
+
# find the closest aspect ratio to the target
|
| 144 |
+
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
| 145 |
+
|
| 146 |
+
# calculate the target width and height
|
| 147 |
+
target_width = image_size * target_aspect_ratio[0]
|
| 148 |
+
target_height = image_size * target_aspect_ratio[1]
|
| 149 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
| 150 |
+
|
| 151 |
+
# resize the image
|
| 152 |
+
resized_img = image.resize((target_width, target_height))
|
| 153 |
+
processed_images = []
|
| 154 |
+
for i in range(blocks):
|
| 155 |
+
box = ((i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size)
|
| 156 |
+
# split the image
|
| 157 |
+
split_img = resized_img.crop(box)
|
| 158 |
+
processed_images.append(split_img)
|
| 159 |
+
assert len(processed_images) == blocks
|
| 160 |
+
if use_thumbnail and len(processed_images) != 1:
|
| 161 |
+
thumbnail_img = image.resize((image_size, image_size))
|
| 162 |
+
processed_images.append(thumbnail_img)
|
| 163 |
+
return processed_images
|
| 164 |
|
| 165 |
|
| 166 |
+
def load_image(image, input_size=448, max_num=6):
|
| 167 |
+
transform = build_transform(input_size=input_size)
|
| 168 |
+
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
| 169 |
+
pixel_values = [transform(image) for image in images]
|
| 170 |
+
pixel_values = torch.stack(pixel_values)
|
| 171 |
+
return pixel_values
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
|
| 175 |
+
if bound:
|
| 176 |
+
start, end = bound[0], bound[1]
|
| 177 |
+
else:
|
| 178 |
+
start, end = -100000, 100000
|
| 179 |
+
start_idx = max(first_idx, round(start * fps))
|
| 180 |
+
end_idx = min(round(end * fps), max_frame)
|
| 181 |
+
seg_size = float(end_idx - start_idx) / num_segments
|
| 182 |
+
frame_indices = np.array([int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(num_segments)])
|
| 183 |
+
return frame_indices
|
| 184 |
+
|
| 185 |
+
def get_num_frames_by_duration(duration):
|
| 186 |
+
local_num_frames = 4
|
| 187 |
+
num_segments = int(duration // local_num_frames)
|
| 188 |
+
if num_segments == 0:
|
| 189 |
+
num_frames = local_num_frames
|
| 190 |
+
else:
|
| 191 |
+
num_frames = local_num_frames * num_segments
|
| 192 |
+
|
| 193 |
+
num_frames = min(512, num_frames)
|
| 194 |
+
num_frames = max(128, num_frames)
|
| 195 |
+
|
| 196 |
+
return num_frames
|
| 197 |
+
|
| 198 |
+
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32, get_frame_by_duration = False):
|
| 199 |
+
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
|
| 200 |
+
max_frame = len(vr) - 1
|
| 201 |
+
fps = float(vr.get_avg_fps())
|
| 202 |
+
|
| 203 |
+
pixel_values_list, num_patches_list = [], []
|
| 204 |
+
transform = build_transform(input_size=input_size)
|
| 205 |
+
if get_frame_by_duration:
|
| 206 |
+
duration = max_frame / fps
|
| 207 |
+
num_segments = get_num_frames_by_duration(duration)
|
| 208 |
+
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
|
| 209 |
+
for frame_index in frame_indices:
|
| 210 |
+
img = Image.fromarray(vr[frame_index].asnumpy()).convert("RGB")
|
| 211 |
+
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
| 212 |
+
pixel_values = [transform(tile) for tile in img]
|
| 213 |
+
pixel_values = torch.stack(pixel_values)
|
| 214 |
+
num_patches_list.append(pixel_values.shape[0])
|
| 215 |
+
pixel_values_list.append(pixel_values)
|
| 216 |
+
pixel_values = torch.cat(pixel_values_list)
|
| 217 |
+
return pixel_values, num_patches_list
|
| 218 |
+
|
| 219 |
# evaluation setting
|
| 220 |
max_num_frames = 512
|
| 221 |
generation_config = dict(
|
|
|
|
| 225 |
top_p=0.1,
|
| 226 |
num_beams=1
|
| 227 |
)
|
|
|
|
| 228 |
video_path = "your_video.mp4"
|
| 229 |
+
num_segments=128
|
| 230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
|
| 232 |
+
with torch.no_grad():
|
| 233 |
+
|
| 234 |
+
pixel_values, num_patches_list = load_video(video_path, num_segments=num_segments, max_num=1, get_frame_by_duration=False)
|
| 235 |
+
pixel_values = pixel_values.to(torch.bfloat16).to(model.device)
|
| 236 |
+
video_prefix = "".join([f"Frame{i+1}: <image>\n" for i in range(len(num_patches_list))])
|
| 237 |
+
# single-turn conversation
|
| 238 |
+
question1 = "Describe this video in detail."
|
| 239 |
+
question = video_prefix + question1
|
| 240 |
+
output1, chat_history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=None, return_history=True)
|
| 241 |
+
print(output1)
|
| 242 |
+
|
| 243 |
+
# multi-turn conversation
|
| 244 |
+
question2 = "How many people appear in the video?"
|
| 245 |
+
output2, chat_history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=chat_history, return_history=True)
|
| 246 |
+
|
| 247 |
+
print(output2)
|
| 248 |
```
|
| 249 |
|
| 250 |
## βοΈ Citation
|
|
|
|
| 257 |
journal={arXiv preprint arXiv:2501.12386},
|
| 258 |
year={2025}
|
| 259 |
}
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
@article{li2024videochatflash,
|
| 263 |
+
title={VideoChat-Flash: Hierarchical Compression for Long-Context Video Modeling},
|
| 264 |
+
author={Li, Xinhao and Wang, Yi and Yu, Jiashuo and Zeng, Xiangyu and Zhu, Yuhan and Huang, Haian and Gao, Jianfei and Li, Kunchang and He, Yinan and Wang, Chenting and others},
|
| 265 |
+
journal={arXiv preprint arXiv:2501.00574},
|
| 266 |
+
year={2024}
|
| 267 |
+
}
|
| 268 |
+
|
| 269 |
```
|