Upload folder using huggingface_hub
Browse files- README.md +20 -3
- config.json +2 -55
- modeling_internvl_chat.py +28 -10
- preprocessor_config.json +19 -0
README.md
CHANGED
|
@@ -74,8 +74,10 @@ We provide an example code to run InternVL2-4B using `transformers`.
|
|
| 74 |
> Please use transformers==4.37.2 to ensure the model works normally.
|
| 75 |
|
| 76 |
```python
|
|
|
|
| 77 |
import torch
|
| 78 |
import torchvision.transforms as T
|
|
|
|
| 79 |
from PIL import Image
|
| 80 |
from torchvision.transforms.functional import InterpolationMode
|
| 81 |
from transformers import AutoModel, AutoTokenizer
|
|
@@ -204,7 +206,22 @@ response, history = model.chat(tokenizer, pixel_values, question, generation_con
|
|
| 204 |
print(f'User: {question}')
|
| 205 |
print(f'Assistant: {response}')
|
| 206 |
|
| 207 |
-
# multi-image multi-round conversation (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
|
| 209 |
pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda()
|
| 210 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
|
@@ -286,7 +303,7 @@ response, history = model.chat(tokenizer, pixel_values, question, generation_con
|
|
| 286 |
print(f'User: {question}')
|
| 287 |
print(f'Assistant: {response}')
|
| 288 |
|
| 289 |
-
question = 'Describe this video in detail.'
|
| 290 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 291 |
num_patches_list=num_patches_list,
|
| 292 |
history=history, return_history=True)
|
|
@@ -416,4 +433,4 @@ InternVL 2.0 是一个多模态大语言模型系列,包含各种规模的模
|
|
| 416 |
journal={arXiv preprint arXiv:2404.16821},
|
| 417 |
year={2024}
|
| 418 |
}
|
| 419 |
-
```
|
|
|
|
| 74 |
> Please use transformers==4.37.2 to ensure the model works normally.
|
| 75 |
|
| 76 |
```python
|
| 77 |
+
import numpy as np
|
| 78 |
import torch
|
| 79 |
import torchvision.transforms as T
|
| 80 |
+
from decord import VideoReader, cpu
|
| 81 |
from PIL import Image
|
| 82 |
from torchvision.transforms.functional import InterpolationMode
|
| 83 |
from transformers import AutoModel, AutoTokenizer
|
|
|
|
| 206 |
print(f'User: {question}')
|
| 207 |
print(f'Assistant: {response}')
|
| 208 |
|
| 209 |
+
# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
|
| 210 |
+
pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
|
| 211 |
+
pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda()
|
| 212 |
+
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
| 213 |
+
|
| 214 |
+
question = '<image>\nDescribe the two images in detail.'
|
| 215 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 216 |
+
history=None, return_history=True)
|
| 217 |
+
|
| 218 |
+
question = 'What are the similarities and differences between these two images.'
|
| 219 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 220 |
+
history=history, return_history=True)
|
| 221 |
+
print(f'User: {question}')
|
| 222 |
+
print(f'Assistant: {response}')
|
| 223 |
+
|
| 224 |
+
# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
|
| 225 |
pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
|
| 226 |
pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda()
|
| 227 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
|
|
|
| 303 |
print(f'User: {question}')
|
| 304 |
print(f'Assistant: {response}')
|
| 305 |
|
| 306 |
+
question = 'Describe this video in detail. Don\'t repeat.'
|
| 307 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 308 |
num_patches_list=num_patches_list,
|
| 309 |
history=history, return_history=True)
|
|
|
|
| 433 |
journal={arXiv preprint arXiv:2404.16821},
|
| 434 |
year={2024}
|
| 435 |
}
|
| 436 |
+
```
|
config.json
CHANGED
|
@@ -12,11 +12,12 @@
|
|
| 12 |
"dynamic_image_size": true,
|
| 13 |
"force_image_size": 448,
|
| 14 |
"llm_config": {
|
| 15 |
-
"_name_or_path": "
|
| 16 |
"add_cross_attention": false,
|
| 17 |
"architectures": [
|
| 18 |
"Phi3ForCausalLM"
|
| 19 |
],
|
|
|
|
| 20 |
"attention_dropout": 0.0,
|
| 21 |
"auto_map": {
|
| 22 |
"AutoConfig": "configuration_phi3.Phi3Config",
|
|
@@ -212,86 +213,32 @@
|
|
| 212 |
"use_llm_lora": 0,
|
| 213 |
"use_thumbnail": true,
|
| 214 |
"vision_config": {
|
| 215 |
-
"_name_or_path": "",
|
| 216 |
-
"add_cross_attention": false,
|
| 217 |
"architectures": [
|
| 218 |
"InternVisionModel"
|
| 219 |
],
|
| 220 |
"attention_dropout": 0.0,
|
| 221 |
-
"bad_words_ids": null,
|
| 222 |
-
"begin_suppress_tokens": null,
|
| 223 |
-
"bos_token_id": null,
|
| 224 |
-
"chunk_size_feed_forward": 0,
|
| 225 |
-
"cross_attention_hidden_size": null,
|
| 226 |
-
"decoder_start_token_id": null,
|
| 227 |
-
"diversity_penalty": 0.0,
|
| 228 |
-
"do_sample": false,
|
| 229 |
"drop_path_rate": 0.0,
|
| 230 |
"dropout": 0.0,
|
| 231 |
-
"early_stopping": false,
|
| 232 |
-
"encoder_no_repeat_ngram_size": 0,
|
| 233 |
-
"eos_token_id": null,
|
| 234 |
-
"exponential_decay_length_penalty": null,
|
| 235 |
-
"finetuning_task": null,
|
| 236 |
-
"forced_bos_token_id": null,
|
| 237 |
-
"forced_eos_token_id": null,
|
| 238 |
"hidden_act": "gelu",
|
| 239 |
"hidden_size": 1024,
|
| 240 |
-
"id2label": {
|
| 241 |
-
"0": "LABEL_0",
|
| 242 |
-
"1": "LABEL_1"
|
| 243 |
-
},
|
| 244 |
"image_size": 448,
|
| 245 |
"initializer_factor": 1.0,
|
| 246 |
"initializer_range": 0.02,
|
| 247 |
"intermediate_size": 4096,
|
| 248 |
-
"is_decoder": false,
|
| 249 |
-
"is_encoder_decoder": false,
|
| 250 |
-
"label2id": {
|
| 251 |
-
"LABEL_0": 0,
|
| 252 |
-
"LABEL_1": 1
|
| 253 |
-
},
|
| 254 |
"layer_norm_eps": 1e-06,
|
| 255 |
-
"length_penalty": 1.0,
|
| 256 |
-
"max_length": 20,
|
| 257 |
-
"min_length": 0,
|
| 258 |
"model_type": "intern_vit_6b",
|
| 259 |
-
"no_repeat_ngram_size": 0,
|
| 260 |
"norm_type": "layer_norm",
|
| 261 |
"num_attention_heads": 16,
|
| 262 |
-
"num_beam_groups": 1,
|
| 263 |
-
"num_beams": 1,
|
| 264 |
"num_channels": 3,
|
| 265 |
"num_hidden_layers": 24,
|
| 266 |
-
"num_return_sequences": 1,
|
| 267 |
"output_attentions": false,
|
| 268 |
"output_hidden_states": false,
|
| 269 |
-
"output_scores": false,
|
| 270 |
-
"pad_token_id": null,
|
| 271 |
"patch_size": 14,
|
| 272 |
-
"prefix": null,
|
| 273 |
-
"problem_type": null,
|
| 274 |
-
"pruned_heads": {},
|
| 275 |
"qk_normalization": false,
|
| 276 |
"qkv_bias": true,
|
| 277 |
-
"remove_invalid_values": false,
|
| 278 |
-
"repetition_penalty": 1.0,
|
| 279 |
"return_dict": true,
|
| 280 |
-
"return_dict_in_generate": false,
|
| 281 |
-
"sep_token_id": null,
|
| 282 |
-
"suppress_tokens": null,
|
| 283 |
-
"task_specific_params": null,
|
| 284 |
-
"temperature": 1.0,
|
| 285 |
-
"tf_legacy_loss": false,
|
| 286 |
-
"tie_encoder_decoder": false,
|
| 287 |
-
"tie_word_embeddings": true,
|
| 288 |
-
"tokenizer_class": null,
|
| 289 |
-
"top_k": 50,
|
| 290 |
-
"top_p": null,
|
| 291 |
"torch_dtype": "bfloat16",
|
| 292 |
-
"torchscript": false,
|
| 293 |
"transformers_version": "4.37.2",
|
| 294 |
-
"typical_p": 1.0,
|
| 295 |
"use_bfloat16": true,
|
| 296 |
"use_flash_attn": true
|
| 297 |
}
|
|
|
|
| 12 |
"dynamic_image_size": true,
|
| 13 |
"force_image_size": 448,
|
| 14 |
"llm_config": {
|
| 15 |
+
"_name_or_path": "microsoft/Phi-3-mini-128k-instruct",
|
| 16 |
"add_cross_attention": false,
|
| 17 |
"architectures": [
|
| 18 |
"Phi3ForCausalLM"
|
| 19 |
],
|
| 20 |
+
"attn_implementation": "flash_attention_2",
|
| 21 |
"attention_dropout": 0.0,
|
| 22 |
"auto_map": {
|
| 23 |
"AutoConfig": "configuration_phi3.Phi3Config",
|
|
|
|
| 213 |
"use_llm_lora": 0,
|
| 214 |
"use_thumbnail": true,
|
| 215 |
"vision_config": {
|
|
|
|
|
|
|
| 216 |
"architectures": [
|
| 217 |
"InternVisionModel"
|
| 218 |
],
|
| 219 |
"attention_dropout": 0.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
"drop_path_rate": 0.0,
|
| 221 |
"dropout": 0.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
"hidden_act": "gelu",
|
| 223 |
"hidden_size": 1024,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
"image_size": 448,
|
| 225 |
"initializer_factor": 1.0,
|
| 226 |
"initializer_range": 0.02,
|
| 227 |
"intermediate_size": 4096,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
"layer_norm_eps": 1e-06,
|
|
|
|
|
|
|
|
|
|
| 229 |
"model_type": "intern_vit_6b",
|
|
|
|
| 230 |
"norm_type": "layer_norm",
|
| 231 |
"num_attention_heads": 16,
|
|
|
|
|
|
|
| 232 |
"num_channels": 3,
|
| 233 |
"num_hidden_layers": 24,
|
|
|
|
| 234 |
"output_attentions": false,
|
| 235 |
"output_hidden_states": false,
|
|
|
|
|
|
|
| 236 |
"patch_size": 14,
|
|
|
|
|
|
|
|
|
|
| 237 |
"qk_normalization": false,
|
| 238 |
"qkv_bias": true,
|
|
|
|
|
|
|
| 239 |
"return_dict": true,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
"torch_dtype": "bfloat16",
|
|
|
|
| 241 |
"transformers_version": "4.37.2",
|
|
|
|
| 242 |
"use_bfloat16": true,
|
| 243 |
"use_flash_attn": true
|
| 244 |
}
|
modeling_internvl_chat.py
CHANGED
|
@@ -7,6 +7,7 @@ import warnings
|
|
| 7 |
from typing import Any, List, Optional, Tuple, Union
|
| 8 |
|
| 9 |
import torch.utils.checkpoint
|
|
|
|
| 10 |
from torch import nn
|
| 11 |
from torch.nn import CrossEntropyLoss
|
| 12 |
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
|
@@ -23,6 +24,14 @@ from .modeling_phi3 import Phi3ForCausalLM
|
|
| 23 |
logger = logging.get_logger(__name__)
|
| 24 |
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
class InternVLChatModel(PreTrainedModel):
|
| 27 |
config_class = InternVLChatConfig
|
| 28 |
main_input_name = 'pixel_values'
|
|
@@ -31,6 +40,7 @@ class InternVLChatModel(PreTrainedModel):
|
|
| 31 |
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
|
| 32 |
super().__init__(config)
|
| 33 |
|
|
|
|
| 34 |
image_size = config.force_image_size or config.vision_config.image_size
|
| 35 |
patch_size = config.vision_config.patch_size
|
| 36 |
self.patch_size = patch_size
|
|
@@ -183,36 +193,44 @@ class InternVLChatModel(PreTrainedModel):
|
|
| 183 |
vit_embeds = self.mlp1(vit_embeds)
|
| 184 |
return vit_embeds
|
| 185 |
|
| 186 |
-
def batch_chat(self, tokenizer, pixel_values,
|
| 187 |
-
|
| 188 |
-
|
| 189 |
if history is not None or return_history:
|
| 190 |
print('Now multi-turn chat is not supported in batch_chat.')
|
| 191 |
raise NotImplementedError
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
| 193 |
self.img_context_token_id = img_context_token_id
|
| 194 |
|
| 195 |
-
|
|
|
|
|
|
|
| 196 |
|
| 197 |
queries = []
|
| 198 |
-
if verbose:
|
| 199 |
-
image_bs = pixel_values.shape[0]
|
| 200 |
-
print(f'dynamic ViT batch size: {image_bs}, num_patches_list: {num_patches_list}')
|
| 201 |
for idx, num_patches in enumerate(num_patches_list):
|
| 202 |
-
|
| 203 |
-
|
|
|
|
| 204 |
template = get_conv_template(self.template)
|
| 205 |
template.append_message(template.roles[0], question)
|
| 206 |
template.append_message(template.roles[1], None)
|
| 207 |
query = template.get_prompt()
|
|
|
|
|
|
|
|
|
|
| 208 |
queries.append(query)
|
|
|
|
| 209 |
tokenizer.padding_side = 'left'
|
| 210 |
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
|
| 211 |
input_ids = model_inputs['input_ids'].cuda()
|
| 212 |
attention_mask = model_inputs['attention_mask'].cuda()
|
| 213 |
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
|
| 214 |
generation_config['eos_token_id'] = eos_token_id
|
| 215 |
-
|
| 216 |
generation_output = self.generate(
|
| 217 |
pixel_values=pixel_values,
|
| 218 |
input_ids=input_ids,
|
|
|
|
| 7 |
from typing import Any, List, Optional, Tuple, Union
|
| 8 |
|
| 9 |
import torch.utils.checkpoint
|
| 10 |
+
import transformers
|
| 11 |
from torch import nn
|
| 12 |
from torch.nn import CrossEntropyLoss
|
| 13 |
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
|
|
|
| 24 |
logger = logging.get_logger(__name__)
|
| 25 |
|
| 26 |
|
| 27 |
+
def version_cmp(v1, v2, op='eq'):
|
| 28 |
+
import operator
|
| 29 |
+
|
| 30 |
+
from packaging import version
|
| 31 |
+
op_func = getattr(operator, op)
|
| 32 |
+
return op_func(version.parse(v1), version.parse(v2))
|
| 33 |
+
|
| 34 |
+
|
| 35 |
class InternVLChatModel(PreTrainedModel):
|
| 36 |
config_class = InternVLChatConfig
|
| 37 |
main_input_name = 'pixel_values'
|
|
|
|
| 40 |
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
|
| 41 |
super().__init__(config)
|
| 42 |
|
| 43 |
+
assert version_cmp(transformers.__version__, '4.36.2', 'ge')
|
| 44 |
image_size = config.force_image_size or config.vision_config.image_size
|
| 45 |
patch_size = config.vision_config.patch_size
|
| 46 |
self.patch_size = patch_size
|
|
|
|
| 193 |
vit_embeds = self.mlp1(vit_embeds)
|
| 194 |
return vit_embeds
|
| 195 |
|
| 196 |
+
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
|
| 197 |
+
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
|
| 198 |
+
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
|
| 199 |
if history is not None or return_history:
|
| 200 |
print('Now multi-turn chat is not supported in batch_chat.')
|
| 201 |
raise NotImplementedError
|
| 202 |
+
|
| 203 |
+
if image_counts is not None:
|
| 204 |
+
num_patches_list = image_counts
|
| 205 |
+
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
|
| 206 |
+
|
| 207 |
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
| 208 |
self.img_context_token_id = img_context_token_id
|
| 209 |
|
| 210 |
+
if verbose and pixel_values is not None:
|
| 211 |
+
image_bs = pixel_values.shape[0]
|
| 212 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
| 213 |
|
| 214 |
queries = []
|
|
|
|
|
|
|
|
|
|
| 215 |
for idx, num_patches in enumerate(num_patches_list):
|
| 216 |
+
question = questions[idx]
|
| 217 |
+
if pixel_values is not None and '<image>' not in question:
|
| 218 |
+
question = '<image>\n' + question
|
| 219 |
template = get_conv_template(self.template)
|
| 220 |
template.append_message(template.roles[0], question)
|
| 221 |
template.append_message(template.roles[1], None)
|
| 222 |
query = template.get_prompt()
|
| 223 |
+
|
| 224 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
| 225 |
+
query = query.replace('<image>', image_tokens, 1)
|
| 226 |
queries.append(query)
|
| 227 |
+
|
| 228 |
tokenizer.padding_side = 'left'
|
| 229 |
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
|
| 230 |
input_ids = model_inputs['input_ids'].cuda()
|
| 231 |
attention_mask = model_inputs['attention_mask'].cuda()
|
| 232 |
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
|
| 233 |
generation_config['eos_token_id'] = eos_token_id
|
|
|
|
| 234 |
generation_output = self.generate(
|
| 235 |
pixel_values=pixel_values,
|
| 236 |
input_ids=input_ids,
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"crop_size": 448,
|
| 3 |
+
"do_center_crop": true,
|
| 4 |
+
"do_normalize": true,
|
| 5 |
+
"do_resize": true,
|
| 6 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
| 7 |
+
"image_mean": [
|
| 8 |
+
0.485,
|
| 9 |
+
0.456,
|
| 10 |
+
0.406
|
| 11 |
+
],
|
| 12 |
+
"image_std": [
|
| 13 |
+
0.229,
|
| 14 |
+
0.224,
|
| 15 |
+
0.225
|
| 16 |
+
],
|
| 17 |
+
"resample": 3,
|
| 18 |
+
"size": 448
|
| 19 |
+
}
|