File size: 1,755 Bytes
c691491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
- generated_from_trainer
model-index:
- name: Ohm-version3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Ohm-version3

This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3029

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.4956        | 1.0   | 443  | 0.3774          |
| 0.2915        | 2.0   | 886  | 0.3666          |
| 0.1777        | 3.0   | 1329 | 0.3342          |
| 0.1012        | 4.0   | 1772 | 0.4155          |
| 0.1026        | 5.0   | 2215 | 0.3799          |
| 0.002         | 6.0   | 2658 | 0.3568          |
| 0.1367        | 7.0   | 3101 | 0.2850          |
| 0.1257        | 8.0   | 3544 | 0.3441          |
| 0.0136        | 9.0   | 3987 | 0.2987          |
| 0.1336        | 10.0  | 4430 | 0.3029          |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1