Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama3.2
|
3 |
+
datasets:
|
4 |
+
- OctoThinker/MegaMath-Web-Pro-Max
|
5 |
+
- LLM360/MegaMath
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
base_model:
|
9 |
+
- meta-llama/Llama-3.2-1B
|
10 |
+
pipeline_tag: text-generation
|
11 |
+
---
|
12 |
+
|
13 |
+
# [OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling](https://arxiv.org/abs/2506.20512)
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
## OctoThinker-1B-Hybrid-Base
|
18 |
+
|
19 |
+
|
20 |
+
The OctoThinker family is built on carefully studied mid-training insights, starting from the Llama-3 family, to create a reinforcement learning–friendly base language model.
|
21 |
+
|
22 |
+
### Training Recipe
|
23 |
+
|
24 |
+
<div style="display: flex; justify-content: left; gap: 20px;">
|
25 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/62cbeb2d72dfd24b86bdf977/avW4-RS6_tJTnLoNHuOJt.png" alt="Data Pipeline" style="width:90%;">
|
26 |
+
</div>
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
### Evaluation Results
|
32 |
+
|
33 |
+
Note that we adopt the few-shot prompting evaluation for these base language models.
|
34 |
+
|
35 |
+
|
36 |
+
<div style="display: flex; justify-content: left; gap: 20px;">
|
37 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/62cbeb2d72dfd24b86bdf977/3n1cnG81wLjjPwzyMyQ-o.png" alt="Data Pipeline" style="width:80%;">
|
38 |
+
</div>
|
39 |
+
|
40 |
+
|
41 |
+
### More about OctoThinker
|
42 |
+
|
43 |
+
|
44 |
+
<div style="display: flex; justify-content: left; gap: 20px;">
|
45 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/62cbeb2d72dfd24b86bdf977/bn85CEB_DW6azJ7KJp11Q.png" alt="Data Pipeline" style="width:100%;">
|
46 |
+
</div>
|
47 |
+
|
48 |
+
|
49 |
+
## Citation
|
50 |
+
|
51 |
+
Check out our [paper](https://arxiv.org/abs/2506.20512) for more details. If you use our models, datasets or find our work useful, please cite
|
52 |
+
|
53 |
+
```
|
54 |
+
@article{wang2025octothinker,
|
55 |
+
title={OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling},
|
56 |
+
author={Wang, Zengzhi and Zhou, Fan and Li, Xuefeng and Liu, Pengfei},
|
57 |
+
year={2025},
|
58 |
+
journal={arXiv preprint arXiv:2506.20512},
|
59 |
+
note={Preprint}
|
60 |
+
}
|
61 |
+
```
|