--- library_name: transformers license: apache-2.0 base_model: facebook/hubert-large-ls960-ft tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: hubert-large-ls960-ft-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.76 --- # hubert-large-ls960-ft-finetuned-gtzan This model is a fine-tuned version of [facebook/hubert-large-ls960-ft](https://huggingface.co/facebook/hubert-large-ls960-ft) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.4835 - Accuracy: 0.76 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2311 | 1.0 | 100 | 2.2236 | 0.24 | | 1.9497 | 2.0 | 200 | 1.7922 | 0.375 | | 1.4897 | 3.0 | 300 | 1.5512 | 0.4 | | 1.3977 | 4.0 | 400 | 1.5379 | 0.455 | | 1.0858 | 5.0 | 500 | 1.4778 | 0.535 | | 1.3193 | 6.0 | 600 | 1.1541 | 0.59 | | 0.9246 | 7.0 | 700 | 1.3068 | 0.595 | | 0.8115 | 8.0 | 800 | 1.0093 | 0.67 | | 0.7293 | 9.0 | 900 | 1.1365 | 0.67 | | 0.7645 | 10.0 | 1000 | 1.0879 | 0.69 | | 0.6447 | 11.0 | 1100 | 1.1747 | 0.69 | | 0.2322 | 12.0 | 1200 | 1.0627 | 0.73 | | 0.2428 | 13.0 | 1300 | 0.9681 | 0.765 | | 0.2777 | 14.0 | 1400 | 1.3665 | 0.72 | | 0.2792 | 15.0 | 1500 | 1.3216 | 0.73 | | 0.2509 | 16.0 | 1600 | 1.2809 | 0.755 | | 0.7852 | 17.0 | 1700 | 1.3793 | 0.77 | | 0.3948 | 18.0 | 1800 | 1.4736 | 0.765 | | 0.3591 | 19.0 | 1900 | 1.5412 | 0.76 | | 0.0059 | 20.0 | 2000 | 1.4835 | 0.76 | ### Framework versions - Transformers 4.50.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0