File size: 37,616 Bytes
6d59500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
<div align="center">

AutoRound
===========================
<h3> Advanced Quantization Algorithm for LLMs</h3>

[![python](https://img.shields.io/badge/python-3.9%2B-blue)](https://github.com/intel/auto-round)
[![version](https://img.shields.io/badge/release-0.4.5-green)](https://github.com/intel/auto-round)
[![license](https://img.shields.io/badge/license-Apache%202-9C27B0)](https://github.com/intel/auto-round/blob/main/LICENSE)
<a href="https://huggingface.co/OPEA">
  <img alt="Model Checkpoints" src="https://img.shields.io/badge/%F0%9F%A4%97%20HF-Models-F57C00">
</a>
---
<div align="left">

AutoRound is an advanced quantization algorithm for low-bits LLM/VLM inference. It's tailored for a wide range
of models. AutoRound adopts sign gradient descent to fine-tune rounding values and minmax values of weights in just 200
steps,
which competes impressively against recent methods without introducing any additional inference overhead and keeping low
tuning cost. The below
image presents an overview of AutoRound. Check out our paper on [arxiv](https://arxiv.org/pdf/2309.05516) for more
details and quantized models in several Hugging Face Spaces, e.g. [OPEA](https://huggingface.co/OPEA), [Kaitchup](https://huggingface.co/kaitchup) and [fbaldassarri](https://huggingface.co/fbaldassarri).

<div align="center">

![](docs/imgs/autoround_overview.png)

<div align="left">

## What's New

* [2024/01]  We provide experimental support for GGUF q4_0 and q4_1 formats.
* [2024/11] We provide experimental support for VLM quantization, please check out
  the [README](./auto_round/mllm/README.md)
* [2024/11] We provide some tips and tricks for LLM&VLM quantization, please check
  out [this blog](https://medium.com/@NeuralCompressor/10-tips-for-quantizing-llms-and-vlms-with-autoround-923e733879a7)

## Installation

### Install from pypi

```bash
# GPU
pip install auto-round[gpu]

# CPU
pip install auto-round[cpu]

# HPU
pip install auto-round-lib
```

<details>
  <summary>Build from Source</summary>

  ```bash
  # GPU
  pip install .[gpu]

  # CPU
  pip install .[cpu]

  # HPU
  python setup.py install lib
  ```

</details>

## Model Quantization

### Basic Usage (Gaudi2/CPU/GPU)

A user guide detailing the full list of supported arguments is provided by calling ```auto-round -h``` on the terminal.
Set the format you want in `format` and
multiple formats exporting has been supported. Please check out [step-by-step-instruction](./docs/step_by_step.md) for
more details about calibration dataset or evaluation.

```bash
auto-round \
    --model facebook/opt-125m \
    --bits 4 \
    --group_size 128 \
    --format "auto_gptq,auto_awq,auto_round" \
    --disable_eval \
    --output_dir ./tmp_autoround
```

We provide two recipes for best accuracy and fast running speed with low memory. Details as below.
<details>
  <summary>Other Recipes</summary>

  ```bash
## best accuracy, 3X slower, low_gpu_mem_usage could save ~20G but ~30% slower
auto-round-best \
    --model facebook/opt-125m \
    --bits 4 \
    --group_size 128 \
    --low_gpu_mem_usage \
    --disable_eval 
  ```

  ```bash
## fast and low memory, 2-3X speedup, slight accuracy drop at W4G128
auto-round-fast \
    --model facebook/opt-125m \
    --bits 4 \
    --group_size 128 \
    --disable_eval 
  ```

</details>

### API Usage (Gaudi2/CPU/GPU)

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "facebook/opt-125m"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

from auto_round import AutoRound

bits, group_size, sym = 4, 128, True
autoround = AutoRound(model, tokenizer, bits=bits, group_size=group_size, sym=sym)

## the best accuracy, 3X slower, low_gpu_mem_usage could save ~20G but ~30% slower
# autoround = AutoRound(model, tokenizer, nsamples=512, iters=1000, low_gpu_mem_usage=True, bits=bits, group_size=group_size, sym=sym)

## fast and low memory, 2-3X speedup, slight accuracy drop at W4G128
# autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym )

autoround.quantize()
output_dir = "./tmp_autoround"
## format= 'auto_round'(default in version>0.3.0), 'auto_gptq', 'auto_awq'
autoround.save_quantized(output_dir, format='auto_round', inplace=True) 
```

<details>
  <summary>Detailed Hyperparameters</summary>

- `model`: The PyTorch model to be quantized.

- `tokenizer`: An optional tokenizer for processing input data. If none, a dataset must be provided.

- `bits (int)`: Number of bits for quantization (default is 4).

- `group_size (int)`: Size of the quantization group (default is 128).

- `sym (bool)`: Whether to use symmetric quantization (default is True).

- `enable_quanted_input (bool)`: Whether to use the output of the previous quantized block as the input for the current
  block for tuning (default is True).

- `enable_minmax_tuning (bool)`: Whether to enable weight min-max tuning (default is True).

- `iters (int)`: Number of tuning iterations (default is 200).

- `lr (float)`: The learning rate for rounding value (default is None, it will be set to 1.0/iters automatically).

- `minmax_lr (float)`: The learning rate for min-max tuning (default is None, it will be set to lr automatically).

- `nsamples (int)`: Number of samples for tuning (default is 128).

- `seqlen (int)`: Data length of the sequence for tuning (default is 2048).

- `batch_size (int)`: Batch size for training (default is 8).

- `scale_dtype (str)`: The data type of quantization scale to be used (default is "float16"), different kernels have
  different choices.

- `amp (bool)`: Whether to use automatic mixed precision (default is True).

- `nblocks (int)`: Packing several blocks as one for tuning together (default is 1).

- `gradient_accumulate_steps (int)`: Number of gradient accumulation steps (default is 1).

- `low_gpu_mem_usage (bool)`: Whether to save GPU memory at the cost of ~20% more tuning time (default is False).

- `dataset Union[str, list, tuple, torch.utils.data.DataLoader]`: The dataset name for tuning (default is "
  NeelNanda/pile-10k"). Local json file and combination of datasets have been supported, e.g. "
  ./tmp.json,NeelNanda/pile-10k:train, mbpp:train+validation+test"

- `layer_config (dict)`: Configuration for weight quantization (default is None), mainly for mixed bits
  or mixed precision.

- `device`: The device to be used for tuning. The default is set to 'auto', allowing for automatic detection.

</details>

### API Usage for VLMs

**This feature is experimental and may be subject to changes**, including potential bug fixes, API modifications, or
adjustments to default hype-parameters

By default, AutoRoundMLLM only quantizes the text module of VLMs and uses `NeelNanda/pile-10k` for calibration. To
quantize the entire model, you can enable `quant_nontext_module` by setting it to True, though support for this feature
is limited. For more information, please refer to the AutoRoundMLLM [readme](./auto_round/mllm/README.md).

```python
from auto_round import AutoRoundMLLM
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, AutoTokenizer

## load the model
model_name = "Qwen/Qwen2-VL-2B-Instruct"
model = Qwen2VLForConditionalGeneration.from_pretrained(
    model_name, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name)
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)

## quantize the model
bits, group_size, sym = 4, 128, True
autoround = AutoRoundMLLM(model, tokenizer, processor,
                          bits=bits, group_size=group_size, sym=sym)
autoround.quantize()

# save the quantized model, set format='auto_gptq' or 'auto_awq' to use other formats
output_dir = "./tmp_autoround"
autoround.save_quantized(output_dir, format='auto_round', inplace=True)
```
#### Export Formats
**AutoRound Format**: This format is well-suited for CPU, HPU devices, 2 bits, as well as mixed-precision
inference. **[2,4] bits are supported**. However, it has not yet gained widespread community adoption.

**AutoGPTQ Format**: This format is well-suited for symmetric quantization on CUDA devices and is widely adopted by the
community, **[2,3,4,8] bits are supported**. However, **the
asymmetric kernel has issues** that can cause considerable accuracy drops, particularly at 2-bit quantization and small
models.

**AutoAWQ Format**: This format is well-suited for asymmetric 4-bit quantization on CUDA devices and is widely
adopted within the community, **only 4-bits quantization is supported**. 

**GGUF** Format: This format is well-suited for CPU devices and is widely adopted by the community, **only q4_0 and q4_1 (W4G32) is supported in our repo**. 

### Quantization Costs

Testing was conducted on the Nvidia A100 80G using the nightly version of PyTorch 2.6.0.dev20241029+cu124. Please note
that data
loading and packing costs have been excluded from the evaluation. **We enable torch.compile for Torch 2.6, but not for
2.5
due to encountered issues.**

To optimize GPU memory usage, in addition to activating `low_gpu_mem_usage`, you can set `gradient_accumulate_steps=8`
and a
`batch_size=1`, though this may increase tuning time.

The 3B and 14B models were evaluated on Qwen 2.5, the 8X7B model is Mixtral, while the remaining models utilized LLaMA
3.1.

| Torch version/Config W4G128                                                                 | 3B            | 8B             | 14B            | 70B             | 8X7B           |
|---------------------------------------------------------------------------------------------|---------------|----------------|----------------|-----------------|----------------|
| 2.6  with torch compile                                                                     | 7min<br/>10GB | 12min<br/>18GB | 23min<br/>22GB | 120min<br/>42GB | 28min<br/>46GB |
| 2.6  with torch compile <br/> low_gpu_mem_usage=True                                        | 12min<br/>6GB | 19min<br/>10GB | 33min<br/>11GB | 140min<br/>25GB | 38min<br/>36GB |
| 2.6  with torch compile <br/> low_gpu_mem_usage=True <br/> gradient_accumulate_steps=8,bs=1 | 15min<br/>3GB | 25min<br/>6GB  | 45min<br/>7GB  | 187min<br/>19GB | 75min<br/>36GB |
| 2.5  w/o torch compile                                                                      | 8min<br/>10GB | 16min<br/>20GB | 30min<br/>25GB | 140min<br/>49GB | 50min<br/>49GB |

## Model Inference

Please run the quantization code first

### AutoRound format

**CPU**: pip install intel-extension-for-pytorch(much higher speed on Intel CPU) or pip
install intel-extension-for-transformers,

**HPU**: docker image with Gaudi Software Stack is recommended. More details can be found
in [Gaudi Guide](https://docs.habana.ai/en/latest/).

**CUDA**: no extra operations for sym quantization, for asym quantization, need to install auto-round from source

#### CPU/HPU/CUDA

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from auto_round import AutoRoundConfig

backend = "auto"  ##cpu, hpu, cuda
quantization_config = AutoRoundConfig(
    backend=backend
)
quantized_model_path = "./tmp_autoround"
model = AutoModelForCausalLM.from_pretrained(quantized_model_path,
                                             device_map=backend.split(':')[0],
                                             quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(quantized_model_path)
text = "There is a girl who likes adventure,"
inputs = tokenizer(text, return_tensors="pt").to(model.device)
print(tokenizer.decode(model.generate(**inputs, max_new_tokens=50)[0]))
```

<br>
<details>
  <summary>Evaluation</summary>

```bash
auto-round --model saved_quantized_model \
    --eval \
    --task lambada_openai \
    --eval_bs 1
```

</details>

### AutoGPTQ/AutoAWQ format

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

quantized_model_path = "./tmp_autoround"
model = AutoModelForCausalLM.from_pretrained(quantized_model_path,
                                             device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(quantized_model_path)
text = "There is a girl who likes adventure,"
inputs = tokenizer(text, return_tensors="pt").to(model.device)
print(tokenizer.decode(model.generate(**inputs, max_new_tokens=50)[0]))
```

## Support List

AutoRound supports basically all the major large language models.

Please note that an asterisk (*) indicates third-party quantized models, which may lack accuracy data and use a
different recipe. We greatly appreciate their efforts and encourage more users to share their models, as we cannot
release most of the models ourselves.

 Model                                     | Supported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nvidia/Llama-3.1-Nemotron-70B-Instruct-HF | [model-opea-int4-sym-autoround](https://huggingface.co/OPEA/Llama-3.1-Nemotron-70B-Instruct-HF-int4-sym-inc),  [model-opea-int4-sym-autogptq](https://huggingface.co/OPEA/Llama-3.1-Nemotron-70B-Instruct-HF-int4-sym-inc),                                                                                                                                                                                                                                                                                                        |
| meta-llama/Llama-3.2-90B-Vision-Instruct  | [model-opea-int4-sym-autoround](https://huggingface.co/OPEA/Llama-3.2-90B-Vision-Instruct-int4-sym-inc), [model-opea-int4-sym-autogptq](https://huggingface.co/OPEA/Llama-3.2-90B-Vision-Instruct-int4-sym-inc)                                                                                                                                                                                                                                                                                                                    |
| Qwen/QwQ-32B-Preview                      | [model-opea-int4-sym-autoround-mixed](https://huggingface.co/OPEA/QwQ-32B-Preview-int4-sym-mixed-inc),[model-opea-int4-sym-autoawq-mixed](https://huggingface.co/OPEA/QwQ-32B-Preview-int4-sym-mixed-awq-inc)                                                                                                                                                                                                                                                                                                                      |
| THUDM/cogvlm2-llama3-chat-19B             | [model-opea-int4-sym-autoround](https://huggingface.co/OPEA/cogvlm2-llama3-chat-19B-int4-sym-inc)                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Qwen/Qwen2-VL-Instruct                    | [model-opea-int4-sym-autoround](https://huggingface.co/OPEA/Qwen2-VL-7B-Instruct-int4-sym-inc),[model-opea-int4-sym-autogptq](https://huggingface.co/OPEA/Qwen2-VL-7B-Instruct-int4-sym-inc)                                                                                                                                                                                                                                                                                                                                       |
| meta-llama/Llama-3.2-11B-Vision           | [model-opea-int4-sym-autoround](https://huggingface.co/OPEA/Llama-3.2-11B-Vision-Instruct-int4-sym-inc), [model-opea-int4-sym-autogptq](https://huggingface.co/OPEA/Llama-3.2-11B-Vision-Instruct-int4-sym-inc)                                                                                                                                                                                                                                                                                                                    |
| microsoft/Phi-3.5-vision-instruct         | [model-opea-int4-sym-autoround](https://huggingface.co/OPEA/Phi-3.5-vision-instruct-int4-sym-inc), [model-opea-int4-sym-gptq](https://huggingface.co/OPEA/Phi-3.5-vision-instruct-int4-sym-inc)                                                                                                                                                                                                                                                                                                                                    |
| liuhaotian/llava-v1.5-7b                  | [model-opea-int4-sym-autoround](https://huggingface.co/OPEA/llava-v1.5-7b-int4-sym-inc),[model-opea-int4-sym-autogptq](https://huggingface.co/OPEA/llava-v1.5-7b-int4-sym-inc)                                                                                                                                                                                                                                                                                                                                                     |
| Qwen/Qwen2.5-7B-Instruct                  | [model-opea-int4-sym-autoround](https://huggingface.co/OPEA/Qwen2.5-7B-Instruct-int4-sym-inc),[model-opea-int4-sym-autogptq](https://huggingface.co/OPEA/Qwen2.5-7B-Instruct-int4-sym-inc) [model-kaitchup-autogptq-int4*](https://huggingface.co/kaitchup/Qwen2.5-7B-Instruct-AutoRound-GPTQ-asym-4bit), [recipe](./docs/Qwen2.5-7B-Instruct-sym.md)                                                                                                                                                                    |
| Qwen/Qwen2.5-14B-Instruct                 | [model-opea-int4-sym-autoround](https://huggingface.co/OPEA/Qwen2.5-14B-Instruct-int4-sym-inc),[model-opea-int4-sym-autogptq](https://huggingface.co/OPEA/Qwen2.5-14B-Instruct-int4-sym-inc)                                                                                                                                                                                                                                                                                                                                       |
| Qwen/Qwen2.5-32B-Instruct                 | [model-opea-int4-sym-autoround](https://huggingface.co/OPEA/Qwen2.5-32B-Instruct-int4-sym-inc)                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Qwen/Qwen2.5-Coder-32B-Instruct           | [model-kaitchup-autogptq-int4*](https://huggingface.co/kaitchup/Qwen2.5-Coder-32B-Instruct-AutoRound-GPTQ-4bit)                                                                                                                                                                                                                                                                                                                                                                                                          |
| Qwen/Qwen2.5-72B-Instruct                 | [model-opea-int4-sym-autoround](https://huggingface.co/OPEA/Qwen2.5-72B-Instruct-int4-sym-inc),[model-opea-int4-sym-autogptq](https://huggingface.co/OPEA/Qwen2.5-72B-Instruct-int4-sym-inc), [model-kaitchup-autogptq-int4*](https://huggingface.co/kaitchup/Qwen2.5-72B-Instruct-AutoRound-GPTQ-4bit),  [model-kaitchup-autogptq-int2*](https://huggingface.co/kaitchup/Qwen2.5-72B-Instruct-AutoRound-GPTQ-2bit), [recipe](./docs/Qwen2.5-72B-Instruct-sym.md)                                              |
| meta-llama/Meta-Llama-3.1-70B-Instruct    | [model-opea-int4-sym-autoround](https://huggingface.co/OPEA/Meta-Llama-3.1-70B-Instruct-int4-sym-inc), [model-opea-int4-sym-autogptq](https://huggingface.co/OPEA/Meta-Llama-3.1-70B-Instruct-int4-sym-inc),[model-opea-int4-asym-autoround](https://huggingface.co/OPEA/Meta-Llama-3.1-70B-Instruct-int4-asym-inc)                                                                                                                                                                                                                |
| meta-llama/Meta-Llama-3.1-8B-Instruct     | [model-opea-int4-sym-autoround](https://huggingface.co/OPEA/Meta-Llama-3.1-8B-Instruct-int4-sym-inc),[model-opea-int4-sym-autogptq](https://huggingface.co/OPEA/Meta-Llama-3.1-8B-Instruct-int4-sym-inc),[model-kaitchup-autogptq-int4*](https://huggingface.co/kaitchup/Meta-Llama-3.1-8B-Instruct-autoround-gptq-4bit-asym), [model-kaitchup-autogptq-sym-int4*](https://huggingface.co/kaitchup/Meta-Llama-3.1-8B-Instruct-autoround-gptq-4bit-sym), [recipe](https://huggingface.co/Intel/Meta-Llama-3.1-8B-Instruct-int4-inc) |
| meta-llama/Meta-Llama-3.1-8B              | [model-kaitchup-autogptq-sym-int4*](https://huggingface.co/kaitchup/Meta-Llama-3.1-8B-autoround-gptq-4bit-sym)                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Qwen/Qwen2-7B                             | [model-autoround-sym-int4](https://huggingface.co/Intel/Qwen2-7B-int4-inc), [model-autogptq-sym-int4](https://huggingface.co/Intel/Qwen2-7B-int4-inc)                                                                                                                                                                                                                                                                                                                                                                              |
| THUDM/glm-4-9b-chat                       | [model-opea-int4-sym-autoround](https://huggingface.co/OPEA/glm-4-9b-chat-int4-sym-inc),[model-opea-int4-sym-autogptq](https://huggingface.co/OPEA/glm-4-9b-chat-int4-sym-inc)                                                                                                                                                                                                                                                                                                                                                     |
| Qwen/Qwen2-57B-A14B-Instruct              | [model-autoround-sym-int4](https://huggingface.co/Intel/Qwen2-57B-A14B-Instruct-int4-inc),[model-autogptq-sym-int4](https://huggingface.co/Intel/Qwen2-57B-A14B-Instruct-int4-inc)                                                                                                                                                                                                                                                                                                                                                 |
| 01-ai/Yi-1.5-9B                           | [model-LnL-AI-autogptq-int4*](https://huggingface.co/LnL-AI/Yi-1.5-9B-4bit-gptq-autoround)                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 01-ai/Yi-1.5-9B-Chat                      | [model-LnL-AI-autogptq-int4*](https://huggingface.co/LnL-AI/Yi-1.5-9B-Chat-4bit-gptq-autoround)                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Intel/neural-chat-7b-v3-3                 | [model-autogptq-int4](https://huggingface.co/Intel/neural-chat-7b-v3-3-int4-inc)                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Intel/neural-chat-7b-v3-1                 | [model-autogptq-int4](https://huggingface.co/Intel/neural-chat-7b-v3-1-int4-inc)                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TinyLlama-1.1B-intermediate               | [model-LnL-AI-autogptq-int4*](https://huggingface.co/LnL-AI/TinyLlama-1.1B-intermediate-step-1341k-3T-autoround-lm_head-symFalse)                                                                                                                                                                                                                                                                                                                                                                                                  |
| mistralai/Mistral-7B-v0.1                 | [model-autogptq-lmhead-int4](https://huggingface.co/Intel/Mistral-7B-v0.1-int4-inc-lmhead), [model-autogptq-int4](https://huggingface.co/Intel/Mistral-7B-v0.1-int4-inc)                                                                                                                                                                                                                                                                                                                                                           |
| google/gemma-2b                           | [model-autogptq-int4](https://huggingface.co/Intel/gemma-2b-int4-inc)                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| tiiuae/falcon-7b                          | [model-autogptq-int4-G64](https://huggingface.co/Intel/falcon-7b-int4-inc)                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| sapienzanlp/modello-italia-9b             | [model-fbaldassarri-autogptq-int4*](https://huggingface.co/fbaldassarri/modello-italia-9b-autoround-w4g128-cpu)                                                                                                                                                                                                                                                                                                                                                                                                                    |
| microsoft/phi-2                           | [model-autoround-sym-int4](https://huggingface.co/Intel/phi-2-int4-inc) [model-autogptq-sym-int4](https://huggingface.co/Intel/phi-2-int4-inc)                                                                                                                                                                                                                                                                                                                                                                                     |
| microsoft/Phi-3.5-mini-instruct           | [model-kaitchup-autogptq-sym-int4*](https://huggingface.co/kaitchup/Phi-3.5-Mini-instruct-AutoRound-4bit)                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mistralai/Mistral-7B-Instruct-v0.2        | [outdated-recipe](./docs/Mistral-7B-Instruct-v0.2-asym-recipe.md)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| mistralai/Mixtral-8x7B-Instruct-v0.1      | [outdated-recipe](./docs/Mixtral-8x7B-Instruct-v0.1-asym-recipe.md)                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mistralai/Mixtral-8x7B-v0.1               | [outdated-recipe](./docs/Mixtral-8x7B-v0.1-asym-acc.md)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| meta-llama/Meta-Llama-3-8B-Instruct       | [outdated-recipe](./docs/Meta-Llama-3-8B-Instruct-asym-recipe.md)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| google/gemma-7b                           | [outdated-recipe](./docs/gemma-7b-asym-recipe.md)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| meta-llama/Llama-2-7b-chat-hf             | [outdated-recipe](./docs/Llama-2-7b-chat-hf-asym-recipe.md)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 
| baichuan-inc/Baichuan2-7B-Chat            | [outdated-recipe](./docs/baichuan2-7b-cha-asym-recipe.md)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         
| 01-ai/Yi-6B-Chat                          | [outdated-recipe](./docs/Yi-6B-Chat-asym-recipe.md)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     
| facebook/opt-2.7b                         | [outdated-recipe](./docs/opt-2.7b-asym-recipe.md)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| bigscience/bloom-3b                       | [outdated-recipe](./docs/bloom-3B-asym-recipe.md)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EleutherAI/gpt-j-6b                       | [outdated-recipe](./docs/gpt-j-6B-asym-recipe.md)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 

## Integration

AutoRound has been integrated into multiple repositories.

[Intel Neural Compressor](https://github.com/intel/neural-compressor)

[ModelCloud/GPTQModel](https://github.com/ModelCloud/GPTQModel)

[pytorch/ao](https://github.com/pytorch/ao)

## Reference

If you find AutoRound useful for your research, please cite our paper:

```bash
@article{cheng2023optimize,
  title={Optimize Weight Rounding via Signed Gradient Descent for the Quantization of LLMs},
  author={Cheng, Wenhua and Zhang, Weiwei and Shen, Haihao and Cai, Yiyang and He, Xin and Lv, Kaokao and Liu, Yi},
  journal={arXiv preprint arXiv:2309.05516},
  year={2023}
}
```