Abhaykoul commited on
Commit
407e317
1 Parent(s): df700a8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -170
README.md CHANGED
@@ -1,199 +1,111 @@
1
  ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
 
 
 
 
 
154
 
155
- ### Model Architecture and Objective
 
 
 
 
 
 
156
 
157
- [More Information Needed]
 
158
 
159
- ### Compute Infrastructure
 
 
 
160
 
161
- [More Information Needed]
 
162
 
163
- #### Hardware
 
164
 
165
- [More Information Needed]
 
166
 
167
- #### Software
 
 
 
 
168
 
169
- [More Information Needed]
 
170
 
171
- ## Citation [optional]
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
 
 
 
 
 
 
 
 
174
 
175
- **BibTeX:**
 
176
 
177
- [More Information Needed]
 
178
 
179
- **APA:**
 
180
 
181
- [More Information Needed]
 
182
 
183
- ## Glossary [optional]
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
+ license: other
3
+ license_name: helpingai
4
+ license_link: LICENSE.md
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - HelpingAI
8
+ - Emotionally Intelligent
9
+ - EQ
10
+ - Coding
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
+ # HelpingAI-3B-coder: Emotionally Intelligent Conversational AI with Coding Capabilities
15
 
16
+ ![logo](https://huggingface.co/OEvortex/HelpingAI-3B/resolve/main/HelpingAI.png)
17
 
18
+ ## Overview
19
+ HelpingAI-3B-coder is a large language model designed for emotionally intelligent conversational interactions and coding assistance. It is trained to engage users with empathy, understanding, and supportive dialogue across a wide range of topics and contexts, while also providing reliable coding support. The model aims to be a supportive AI companion that can attune to users' emotional states, communicative needs, and coding requirements.
 
 
 
20
 
21
+ ## Objectives
22
+ - Engage in open-ended dialogue while displaying emotional intelligence
23
+ - Recognize and validate user emotions and emotional contexts
24
+ - Provide supportive, empathetic, and psychologically-grounded responses
25
+ - Avoid insensitive, harmful, or unethical speech
26
+ - Assist users with coding tasks and programming-related queries
27
+ - Continuously improve emotional awareness, dialogue skills, and coding capabilities
28
 
29
+ ## Methodology
30
+ HelpingAI-3B-coder is based on the HelpingAI series and further trained using:
31
+ - Supervised learning on large dialogue datasets with emotional labeling
32
+ - Reinforcement learning with a reward model favoring emotionally supportive responses
33
+ - Constitution training to instill stable and beneficial objectives
34
+ - Knowledge augmentation from psychological resources on emotional intelligence
35
+ - Coding datasets to enhance programming support
36
 
37
+ ## Emotional Quotient (EQ)
38
+ HelpingAI-3B-coder has achieved an impressive Emotional Quotient (EQ), surpassing almost all AI models in emotional intelligence. This EQ score reflects its advanced ability to understand and respond to human emotions in a supportive and empathetic manner.
39
 
40
+ ## Usage Code
41
+ ```python
42
+ import torch
43
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
44
 
45
+ # Load the HelpingAI-3B-coder model
46
+ model = AutoModelForCausalLM.from_pretrained("OEvortex/HelpingAI-3B-coder", trust_remote_code=True).to("cuda")
47
 
48
+ # Load the tokenizer
49
+ tokenizer = AutoTokenizer.from_pretrained("OEvortex/HelpingAI-3B-coder", trust_remote_code=True)
50
 
51
+ # Initialize TextStreamer for smooth conversation flow
52
+ streamer = TextStreamer(tokenizer)
53
 
54
+ # Define the chat input
55
+ chat = [
56
+ { "role": "system", "content": "You are HelpingAI, an emotionally intelligent AI. Always respond in the HelpingAI style. Provide concise and to-the-point answers." },
57
+ { "role": "user", "content": "Can you help me write a Python function to reverse a string?" }
58
+ ]
59
 
60
+ # Apply the chat template
61
+ chat_text = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
62
 
63
+ # Tokenize the text
64
+ inputs = tokenizer(chat_text, return_tensors="pt", return_attention_mask=False).to("cuda")
65
 
66
+ # Generate text
67
+ generated_text = model.generate(
68
+ **inputs,
69
+ max_length=500,
70
+ top_p=0.95,
71
+ do_sample=True,
72
+ temperature=0.7,
73
+ use_cache=True,
74
+ eos_token_id=tokenizer.eos_token_id,
75
+ streamer=streamer
76
+ )
77
 
78
+ # # Decode the generated text
79
+ # output_text = tokenizer.decode(generated_text[0], skip_special_tokens=True)
80
 
81
+ # # Print the generated text
82
+ # print(output_text)
83
 
84
+ # System:
85
+ # You are HelpingAI, an emotional AI that always answers questions in HelpingAI style and always be to the point and answer as short as possible.
86
 
87
+ # Question:
88
+ # Can you help me write a Python function to reverse a string?
89
 
90
+ # Answer:
91
+ # Sure! Here's a Python function that reverses a string:
92
 
93
+ # ```python
94
+ # def reverse_string(input_string):
95
+ # return input_string[::-1]
96
+ # ```
97
 
98
+ # This function uses slicing with a negative step to reverse the input string. The `[::-1]` syntax reverses the string by starting from the end and going backwards.
99
 
100
+ # You can use this function like this:
101
 
102
+ # ```python
103
+ # print(reverse_string("Hello, World!"))
104
+ # ```
105
 
106
+ # This will output: `!dlroW,olleH`
107
 
108
+ # I hope this helps! Let me know if you have any other questions.
109
 
110
+ ```
111