[[subsets]] caption_extension = ".txt" caption_tag_dropout_rate = 0.1 image_dir = "D:/datasets/reg2" name = "reg2" num_repeats = 1 random_crop = true random_crop_padding_percent = 0.06 shuffle_caption = true [[subsets]] caption_extension = ".txt" caption_tag_dropout_rate = 0.1 image_dir = "Y:/stable-diffusion/datasets/Artoria tiny" keep_tokens = 2 name = "ishiri small" num_repeats = 1 random_crop = true random_crop_padding_percent = 0.06 shuffle_caption = true [[subsets]] caption_extension = ".txt" caption_tag_dropout_rate = 0.1 image_dir = "D:/datasets/reg" name = "reg" num_repeats = 1 random_crop_padding_percent = 0.05 shuffle_caption = true [[subsets]] caption_extension = ".txt" caption_tag_dropout_rate = 0.1 image_dir = "D:/datasets/mix" name = "mix" num_repeats = 1 random_crop = true random_crop_padding_percent = 0.06 shuffle_caption = true [train_mode] train_mode = "lora" [general_args.args] persistent_data_loader_workers = true pretrained_model_name_or_path = "Y:/stable-diffusion/models/Stable-diffusion/Illustrious-XL-v20.safetensors" debiased_estimation_loss = true mixed_precision = "bf16" gradient_checkpointing = true gradient_accumulation_steps = 64 seed = 8602366.0 max_data_loader_n_workers = 2 max_token_length = 225 prior_loss_weight = 0.01 xformers = true max_train_epochs = 30 sdxl = true v_parameterization = true [general_args.dataset_args] batch_size = 4 resolution = 1024 [network_args.args] network_dim = 64 network_alpha = 128.0 min_timestep = 0 max_timestep = 1000 network_train_unet_only = true [optimizer_args.args] optimizer_type = "AdamW8bitAO" lr_scheduler = "constant_with_warmup" loss_type = "l2" learning_rate = 3e-5 warmup_ratio = 0.01 max_grad_norm = 0.1 zero_terminal_snr = true [saving_args.args] output_dir = "Y:/stable-diffusion/lora/derrian_distro/models" output_name = "illustriousXL20-vpred-conv-attempt" save_precision = "bf16" save_model_as = "safetensors" save_every_n_epochs = 1 save_toml = true save_toml_location = "Y:/stable-diffusion/lora/derrian_distro/settings" [logging_args.args] logging_dir = "Y:/stable-diffusion/lora/derrian_distro/logs" log_prefix_mode = "disabled" run_name_mode = "default" log_with = "tensorboard" [edm_loss_args.args] edm2_loss_weighting = true edm2_loss_weighting_optimizer = "LoraEasyCustomOptimizer.fmarscrop.FMARSCropV2ExMachina" edm2_loss_weighting_optimizer_lr = "5e-3" edm2_loss_weighting_optimizer_args = "{'update_strategy':'cautious', 'gamma':0.0, 'betas':(0.99,0.9999,0.999), 'adaptive_clip':0}" edm2_loss_weighting_max_grad_norm = "0" edm2_loss_weighting_generate_graph = true edm2_loss_weighting_generate_graph_output_dir = "Y:/stable-diffusion/lora/derrian_distro/LoRA_Easy_Training_Scripts/edm2 graphs" edm2_loss_weighting_generate_graph_every_x_steps = 10 edm2_loss_weighting_generate_graph_y_limit = 20 edm2_loss_weighting_initial_weights = "" edm2_loss_weighting_num_channels = 448 [bucket_args.dataset_args] enable_bucket = true bucket_reso_steps = 64 max_bucket_reso = 2048 min_bucket_reso = 768 [network_args.args.network_args] conv_dim = 64 conv_alpha = 128.0 algo = "locon" dora_wd = true [optimizer_args.args.optimizer_args] weight_decay = "0.042" betas = "0.9,0.99" bf16_stochastic_round = "True"