Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +10 -0
- README.md +240 -0
- config.json +31 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +13 -0
- heads/domain-router.pkl +3 -0
- heads/head_metadata.json +17 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- setfit
|
| 4 |
+
- sentence-transformers
|
| 5 |
+
- text-classification
|
| 6 |
+
- generated_from_setfit_trainer
|
| 7 |
+
widget:
|
| 8 |
+
- text: 'hasAdditionalInformation: Large Square - 48" x 48" Daily Fundamentals - Vinyl
|
| 9 |
+
for Concrete, hasCreatedDate: 2024-08-12, hasCustomerHomeCountry: United States,
|
| 10 |
+
hasCustomerID: 38262, hasCustomerName: Architecture Products Group (APG)(Architecture
|
| 11 |
+
Products Group (APG) (USA)), hasCutting: Trim to size, hasElementID: 3448379,
|
| 12 |
+
hasElementTitle: Large Square - 48" x 48" Daily Fundamentals - Vinyl for Concrete,
|
| 13 |
+
hasFinishedSizeHeight: 48, hasFinishedSizeWidth: 48, hasFscPaperBeenSpecified:
|
| 14 |
+
No, hasInternalID: ca0cb75e-c8ba-4447-9a73-2f4f31ac1fde, hasMaterialCategory:
|
| 15 |
+
Paper, hasMaterialDescription: Vinyl for Concrete, hasMaterialRecycledPercentage:
|
| 16 |
+
0%, hasMaterialType: Paper and board, hasMaterialUnitOfMeasure: Pounds (lbs),
|
| 17 |
+
hasNumberOfVersions: 1, hasPrice: 95.04 USD, hasPrintedSides: Not printed, hasProductCategory:
|
| 18 |
+
Indoor/Outdoor Signage, hasProofType: PDF digital proof, hasQuantity: 2, hasRecycledContentBeenOffered:
|
| 19 |
+
N/A, hasSupplierName: Firehouse Image Center(Firehouse Image Center - 12168 -
|
| 20 |
+
HHGSP), hasUnitOfMeasure: Inches (in), '
|
| 21 |
+
- text: 'hasCreatedDate: 2024-11-20, hasCustomerHomeCountry: United States, hasCustomerID:
|
| 22 |
+
14347, hasCustomerName: Lowe''s Companies Inc.(Lowe''s USD), hasCutting: Trim
|
| 23 |
+
to size, hasElementID: 3646411, hasElementTitle: RESET00002 PT BRITTEN, hasFinishedSizeHeight:
|
| 24 |
+
1, hasFinishedSizeWidth: 1, hasFlatSizeHeight: 1, hasFlatSizeWidth: 1, hasFscPaperBeenSpecified:
|
| 25 |
+
No, hasInternalID: 47920581-39d1-4737-aa2e-32fdddebe3c3, hasMaterialCategory:
|
| 26 |
+
Other, hasMaterialDescription: Other, hasMaterialType: Other, hasNumberOfVersions:
|
| 27 |
+
1, hasPrice: 0 USD, hasPrintedSides: Single sided, hasProofType: No proof required,
|
| 28 |
+
hasQuantity: 1, hasRecycledContentBeenOffered: N/A, hasSupplierName: BRITTEN BANNERS(Britten
|
| 29 |
+
Inc - 38859 - HHGSP), hasTotalColours: 4, hasUnitOfMeasure: Inches (in), '
|
| 30 |
+
- text: 'hasArtworkDoubleSidedStatus: Double Sided Same, hasCreatedDate: 2024-06-21,
|
| 31 |
+
hasCustomerHomeCountry: United Kingdom, hasCustomerID: 37535, hasCustomerName:
|
| 32 |
+
Musgrave Retail Partners NI Ltd. | Centra NI (Musgrave Retail Partners NI Ltd.
|
| 33 |
+
| Centra NI ), hasCutting: Cut to shape, hasElementID: 3360484, hasElementTitle:
|
| 34 |
+
SKU.21 - Indoor Bunting 5m Summer POS , hasFinishedSizeHeight: 297, hasFinishedSizeWidth:
|
| 35 |
+
210, hasFscPaperBeenSpecified: No, hasInternalID: 62b006eb-1c4e-4d6e-adbf-9ac9543daa86,
|
| 36 |
+
hasMaterialCategory: Paper, hasMaterialDescription: Art, hasMaterialThicknessOrWeight:
|
| 37 |
+
300, hasMaterialType: Paper, hasMaterialUnitOfMeasure: GSM, hasNumberOfVersions:
|
| 38 |
+
1, hasPackingRequirements: Indoor Bunting 5m. A4 pennants. 4/4 onto 300grm art.
|
| 39 |
+
Matt Lam and Die Cut to shape., hasPrice: 45 GBP, hasPrintedSides: Double sided,
|
| 40 |
+
hasProofType: PDF digital proof, hasQuantity: 6, hasQuantityPerVersion: 1, hasRecycledContentBeenOffered:
|
| 41 |
+
No, hasSupplierName: McGowans(McGowans), hasTotalColours: 4, hasTotalColoursFace:
|
| 42 |
+
4, hasUnitOfMeasure: Millimetres (mm), '
|
| 43 |
+
- text: 'hasAdditionalInformation: Title, hasCreatedDate: 2024-08-20, hasCustomerHomeCountry:
|
| 44 |
+
United Kingdom, hasCustomerID: 49021, hasCustomerName: LONDON EYE(MERLIN - EYE
|
| 45 |
+
- LONDON), hasCutting: Trim to size, hasElementID: 3461182, hasElementTitle: 2731
|
| 46 |
+
LE Gift Shop A0 Banners, hasFinishedSizeHeight: 1189, hasFinishedSizeWidth: 841,
|
| 47 |
+
hasFscPaperBeenSpecified: No, hasHandFinishing: Yes, hasHandFinishingDetails:
|
| 48 |
+
hem and eyelet, hasInternalID: b7ec9eab-be07-41d6-b977-191abb1b573f, hasMaterialCategory:
|
| 49 |
+
Plastic, hasMaterialDescription: PVC, hasMaterialThicknessOrWeight: 440, hasMaterialType:
|
| 50 |
+
PVC, hasMaterialUnitOfMeasure: Microns, hasMinimumRecycledContent: 0%, hasNumberOfVersions:
|
| 51 |
+
1, hasPrice: 50 GBP, hasPrintedSides: Single sided, hasProductCategory: Loose
|
| 52 |
+
Print, hasProofType: PDF digital proof, hasQuantity: 2, hasQuantityPerVersion:
|
| 53 |
+
2, hasRecycledContentBeenRequested: No, hasSendToDetails: Simona Bottiglia (she/her)
|
| 54 |
+
Senior Retail Manager The London Eye, County Hall, Westminster Bridge Road,
|
| 55 |
+
London, SE1 7PB, hasSupplierName: Design X-Press Limited(Design X-Press Limited),
|
| 56 |
+
hasTotalColours: 4, hasUnitOfMeasure: Millimetres (mm), '
|
| 57 |
+
- text: 'hasArtworkDoubleSidedStatus: Double Sided Different, hasCreatedDate: 2024-09-17,
|
| 58 |
+
hasCustomerHomeCountry: United States, hasCustomerID: 39021, hasCustomerName:
|
| 59 |
+
Pulte Homes Corporation(PulteGroup | Mid-Atlantic - 1038), hasCutting: Trim to
|
| 60 |
+
size, hasElementID: 3512114, hasElementTitle: MidAtlantic - Cattail Run - Bifolds
|
| 61 |
+
17x11 folded to 8.5x11 (Summerfield) (300 QTY), hasFinishedSizeHeight: 11, hasFinishedSizeWidth:
|
| 62 |
+
8.5, hasFlatSizeHeight: 11, hasFlatSizeWidth: 17, hasFscPaperBeenSpecified: No,
|
| 63 |
+
hasInternalID: 14a905f8-9a6a-4ea9-a0e4-7299704feeb0, hasMachineFinishing: Yes,
|
| 64 |
+
hasMachineFinishingDetails: Half Fold, hasMaterialCategory: Paper, hasMaterialDescription:
|
| 65 |
+
Gloss/Text, Substrate Grade #2, bleached(white), bleed, hasMaterialThicknessOrWeight:
|
| 66 |
+
80, hasMaterialType: Paper, hasMaterialUnitOfMeasure: Pounds (lbs), hasNumberOfVersions:
|
| 67 |
+
1, hasPackingRequirements: Shrink wrap in packs of 100 Deliver to, hasPrice:
|
| 68 |
+
200.68 USD, hasPrintedSides: Double sided, hasProofType: PDF digital proof, hasQuantity:
|
| 69 |
+
300, hasQuantityPerVersion: 300, hasRecycledContentBeenOffered: N/A, hasSupplierName:
|
| 70 |
+
Team Concept Printing (Team Concept Printing - HHGSP - PI), hasTotalColours:
|
| 71 |
+
4, hasTotalColoursFace: 4, hasUnitOfMeasure: Inches (in), '
|
| 72 |
+
metrics:
|
| 73 |
+
- f1_micro
|
| 74 |
+
- f1_macro
|
| 75 |
+
- f1_weighted
|
| 76 |
+
- precision
|
| 77 |
+
- accuracy
|
| 78 |
+
- recall
|
| 79 |
+
pipeline_tag: text-classification
|
| 80 |
+
library_name: setfit
|
| 81 |
+
inference: false
|
| 82 |
+
model-index:
|
| 83 |
+
- name: SetFit
|
| 84 |
+
results:
|
| 85 |
+
- task:
|
| 86 |
+
type: text-classification
|
| 87 |
+
name: Text Classification
|
| 88 |
+
dataset:
|
| 89 |
+
name: Unknown
|
| 90 |
+
type: unknown
|
| 91 |
+
split: test
|
| 92 |
+
metrics:
|
| 93 |
+
- type: f1_micro
|
| 94 |
+
value: 0.8504854368932039
|
| 95 |
+
name: F1_Micro
|
| 96 |
+
- type: f1_macro
|
| 97 |
+
value: 0.35725054393071265
|
| 98 |
+
name: F1_Macro
|
| 99 |
+
- type: f1_weighted
|
| 100 |
+
value: 0.7613078250339776
|
| 101 |
+
name: F1_Weighted
|
| 102 |
+
- type: precision
|
| 103 |
+
value: 0.9125000238418579
|
| 104 |
+
name: Precision
|
| 105 |
+
- type: accuracy
|
| 106 |
+
value: 0.879687488079071
|
| 107 |
+
name: Accuracy
|
| 108 |
+
- type: recall
|
| 109 |
+
value: 0.7963636517524719
|
| 110 |
+
name: Recall
|
| 111 |
+
---
|
| 112 |
+
|
| 113 |
+
# SetFit
|
| 114 |
+
|
| 115 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A OneVsRestClassifier instance is used for classification.
|
| 116 |
+
|
| 117 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
| 118 |
+
|
| 119 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
| 120 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
| 121 |
+
|
| 122 |
+
## Model Details
|
| 123 |
+
|
| 124 |
+
### Model Description
|
| 125 |
+
- **Model Type:** SetFit
|
| 126 |
+
<!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
|
| 127 |
+
- **Classification head:** a OneVsRestClassifier instance
|
| 128 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 129 |
+
- **Number of Classes:** 8 classes
|
| 130 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
| 131 |
+
<!-- - **Language:** Unknown -->
|
| 132 |
+
<!-- - **License:** Unknown -->
|
| 133 |
+
|
| 134 |
+
### Model Sources
|
| 135 |
+
|
| 136 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
| 137 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
| 138 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
| 139 |
+
|
| 140 |
+
## Evaluation
|
| 141 |
+
|
| 142 |
+
### Metrics
|
| 143 |
+
| Label | F1_Micro | F1_Macro | F1_Weighted | Precision | Accuracy | Recall |
|
| 144 |
+
|:--------|:---------|:---------|:------------|:----------|:---------|:-------|
|
| 145 |
+
| **all** | 0.8505 | 0.3573 | 0.7613 | 0.9125 | 0.8797 | 0.7964 |
|
| 146 |
+
|
| 147 |
+
## Uses
|
| 148 |
+
|
| 149 |
+
### Direct Use for Inference
|
| 150 |
+
|
| 151 |
+
First install the SetFit library:
|
| 152 |
+
|
| 153 |
+
```bash
|
| 154 |
+
pip install setfit
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
Then you can load this model and run inference.
|
| 158 |
+
|
| 159 |
+
```python
|
| 160 |
+
from setfit import SetFitModel
|
| 161 |
+
|
| 162 |
+
# Download from the 🤗 Hub
|
| 163 |
+
model = SetFitModel.from_pretrained("setfit_model_id")
|
| 164 |
+
# Run inference
|
| 165 |
+
preds = model("hasCreatedDate: 2024-11-20, hasCustomerHomeCountry: United States, hasCustomerID: 14347, hasCustomerName: Lowe's Companies Inc.(Lowe's USD), hasCutting: Trim to size, hasElementID: 3646411, hasElementTitle: RESET00002 PT BRITTEN, hasFinishedSizeHeight: 1, hasFinishedSizeWidth: 1, hasFlatSizeHeight: 1, hasFlatSizeWidth: 1, hasFscPaperBeenSpecified: No, hasInternalID: 47920581-39d1-4737-aa2e-32fdddebe3c3, hasMaterialCategory: Other, hasMaterialDescription: Other, hasMaterialType: Other, hasNumberOfVersions: 1, hasPrice: 0 USD, hasPrintedSides: Single sided, hasProofType: No proof required, hasQuantity: 1, hasRecycledContentBeenOffered: N/A, hasSupplierName: BRITTEN BANNERS(Britten Inc - 38859 - HHGSP), hasTotalColours: 4, hasUnitOfMeasure: Inches (in), ")
|
| 166 |
+
```
|
| 167 |
+
|
| 168 |
+
<!--
|
| 169 |
+
### Downstream Use
|
| 170 |
+
|
| 171 |
+
*List how someone could finetune this model on their own dataset.*
|
| 172 |
+
-->
|
| 173 |
+
|
| 174 |
+
<!--
|
| 175 |
+
### Out-of-Scope Use
|
| 176 |
+
|
| 177 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 178 |
+
-->
|
| 179 |
+
|
| 180 |
+
<!--
|
| 181 |
+
## Bias, Risks and Limitations
|
| 182 |
+
|
| 183 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 184 |
+
-->
|
| 185 |
+
|
| 186 |
+
<!--
|
| 187 |
+
### Recommendations
|
| 188 |
+
|
| 189 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 190 |
+
-->
|
| 191 |
+
|
| 192 |
+
## Training Details
|
| 193 |
+
|
| 194 |
+
### Training Set Metrics
|
| 195 |
+
| Training set | Min | Median | Max |
|
| 196 |
+
|:-------------|:----|:---------|:----|
|
| 197 |
+
| Word count | 69 | 111.6031 | 313 |
|
| 198 |
+
|
| 199 |
+
### Framework Versions
|
| 200 |
+
- Python: 3.10.16
|
| 201 |
+
- SetFit: 1.1.1
|
| 202 |
+
- Sentence Transformers: 3.4.1
|
| 203 |
+
- Transformers: 4.49.0
|
| 204 |
+
- PyTorch: 2.6.0+cu124
|
| 205 |
+
- Datasets: 3.4.1
|
| 206 |
+
- Tokenizers: 0.21.1
|
| 207 |
+
|
| 208 |
+
## Citation
|
| 209 |
+
|
| 210 |
+
### BibTeX
|
| 211 |
+
```bibtex
|
| 212 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
| 213 |
+
doi = {10.48550/ARXIV.2209.11055},
|
| 214 |
+
url = {https://arxiv.org/abs/2209.11055},
|
| 215 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
| 216 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
| 217 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
| 218 |
+
publisher = {arXiv},
|
| 219 |
+
year = {2022},
|
| 220 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
| 221 |
+
}
|
| 222 |
+
```
|
| 223 |
+
|
| 224 |
+
<!--
|
| 225 |
+
## Glossary
|
| 226 |
+
|
| 227 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 228 |
+
-->
|
| 229 |
+
|
| 230 |
+
<!--
|
| 231 |
+
## Model Card Authors
|
| 232 |
+
|
| 233 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 234 |
+
-->
|
| 235 |
+
|
| 236 |
+
<!--
|
| 237 |
+
## Model Card Contact
|
| 238 |
+
|
| 239 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 240 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "avsolatorio/GIST-small-Embedding-v0",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"hidden_act": "gelu",
|
| 9 |
+
"hidden_dropout_prob": 0.1,
|
| 10 |
+
"hidden_size": 384,
|
| 11 |
+
"id2label": {
|
| 12 |
+
"0": "LABEL_0"
|
| 13 |
+
},
|
| 14 |
+
"initializer_range": 0.02,
|
| 15 |
+
"intermediate_size": 1536,
|
| 16 |
+
"label2id": {
|
| 17 |
+
"LABEL_0": 0
|
| 18 |
+
},
|
| 19 |
+
"layer_norm_eps": 1e-12,
|
| 20 |
+
"max_position_embeddings": 512,
|
| 21 |
+
"model_type": "bert",
|
| 22 |
+
"num_attention_heads": 12,
|
| 23 |
+
"num_hidden_layers": 12,
|
| 24 |
+
"pad_token_id": 0,
|
| 25 |
+
"position_embedding_type": "absolute",
|
| 26 |
+
"torch_dtype": "float32",
|
| 27 |
+
"transformers_version": "4.49.0",
|
| 28 |
+
"type_vocab_size": 2,
|
| 29 |
+
"use_cache": true,
|
| 30 |
+
"vocab_size": 30522
|
| 31 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.4.1",
|
| 4 |
+
"transformers": "4.49.0",
|
| 5 |
+
"pytorch": "2.6.0+cu124"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
config_setfit.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"labels": [
|
| 3 |
+
"http://example.com/domain#ManufacturingDomain",
|
| 4 |
+
"http://example.com/domain#ProductDomain",
|
| 5 |
+
"http://example.com/domain#AssemblyDomain",
|
| 6 |
+
"http://example.com/domain#SupplierDomain",
|
| 7 |
+
"http://example.com/domain#MaterialDomain",
|
| 8 |
+
"http://example.com/domain#MeasurementDomain",
|
| 9 |
+
"http://example.com/domain#FeatureDomain",
|
| 10 |
+
"http://example.com/domain#ShippingAndHandlingDomain"
|
| 11 |
+
],
|
| 12 |
+
"normalize_embeddings": false
|
| 13 |
+
}
|
heads/domain-router.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e4d3d2dee16136f590aad71f365f7eb48cf7118e9667abada200996002635dd9
|
| 3 |
+
size 28404
|
heads/head_metadata.json
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"name": "domain-router",
|
| 4 |
+
"dataset_name": "Northell/ros-classifiers-domains-routing",
|
| 5 |
+
"dataset_revision": null,
|
| 6 |
+
"num_classes": 8,
|
| 7 |
+
"metrics": {
|
| 8 |
+
"f1_micro": 0.8504854368932039,
|
| 9 |
+
"f1_macro": 0.35725054393071265,
|
| 10 |
+
"f1_weighted": 0.7613078250339776,
|
| 11 |
+
"precision": 0.9125000238418579,
|
| 12 |
+
"accuracy": 0.879687488079071,
|
| 13 |
+
"recall": 0.7963636517524719
|
| 14 |
+
},
|
| 15 |
+
"pkl_cache": null
|
| 16 |
+
}
|
| 17 |
+
]
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:efa751a822b7eb0a7db5d0167b6e38ffd6ad1978e71de205d7c0efedcc18bf2a
|
| 3 |
+
size 133462128
|
model_head.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:92197e97e8ca99ea116a8ecf46a0c475a21605c75b28ef89d27d0bfda7e4ca3a
|
| 3 |
+
size 28404
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": true
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "[MASK]",
|
| 50 |
+
"model_max_length": 512,
|
| 51 |
+
"never_split": null,
|
| 52 |
+
"pad_token": "[PAD]",
|
| 53 |
+
"sep_token": "[SEP]",
|
| 54 |
+
"strip_accents": null,
|
| 55 |
+
"tokenize_chinese_chars": true,
|
| 56 |
+
"tokenizer_class": "BertTokenizer",
|
| 57 |
+
"unk_token": "[UNK]"
|
| 58 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|