File size: 20,104 Bytes
cbb813f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "PS0DUxR1S-bl"
   },
   "source": [
    "# CODE FOR FINE-TUNING XLM-ROBERTA-BASE 💗🧸\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "csEDxO3zNuYH"
   },
   "source": [
    "The purpose of sharing this code is to show how to fine-tune an XLM-Roberta-Base model. Personally, I used Google Colab because of the GPU."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "z-SNvmJSTbqL"
   },
   "source": [
    "If you want to make inferences with my model I have carried out pre-processing or data-cleaning operations, I share them below.\n",
    "\n",
    "\n",
    "**REMEMBER TO DO SAME CLEANING OPERATION THAT ARE PERFORMED IN DF USED FOR FINE-TUNING ALSO IN TEXT WHEN YOU DO INFERENCE AND RENAME YOUR DF COLUMNS IN \"labels\" AND \"text\" ❤**"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "Vz3uYDCWTm1U"
   },
   "source": [
    "\n",
    "\n",
    "```\n",
    "\n",
    "# Function for removing personal information in ticket's text\n",
    "def identify_names(word:str, name:list=name, surname:list=surname) -> bool:\n",
    "    \"\"\"\n",
    "    :param word: string with one word\n",
    "    :param name: list that contains a sequence of italian names\n",
    "    :param surname: list that contains a sequence of italian surnames\n",
    "    :return boolean true if it's a name or a surname, false otherwise\n",
    "    Verify if a word it's name or a surname\n",
    "    \"\"\"\n",
    "    return word in name or word in surname\n",
    "\n",
    "# Function for removing cities from ticket's text\n",
    "def identify_location(ticket:str, location:list=location) -> str:\n",
    "    \"\"\"\n",
    "    :param ticket: string with ticket description\n",
    "    :param location: list that contains a sequence of italian cities\n",
    "    :return cleaning string without location\n",
    "    Verify if a word it's name or a surname\n",
    "    \"\"\"\n",
    "    pattern = r'\\b(?:' + '|'.join(map(re.escape, location)) + r')\\b'\n",
    "    ticket = re.sub(pattern, '', ticket, flags=re.IGNORECASE)\n",
    "    return ticket.strip()\n",
    "\n",
    "# Function for filter text from noises\n",
    "def extract_text_from_email(text:str)-> str:\n",
    "    \"\"\"\n",
    "    :param text: string with the text of one ticket\n",
    "    :return string the input text cleaning from noises and personal information\n",
    "    Verify if a word it's name or a surname\n",
    "    \"\"\"\n",
    "    if isinstance(text, str):\n",
    "      pattern = pattern = r\"={2,}(.*?)(grazie\\s*[,!.\\s]*|cordiali saluti\\s*[,!.\\s]*|buona giornata\\s*[,!.\\s]*|a presto\\s*[,!.\\s]*|Grazie\\s*[,!.\\s]*|Cordiali Saluti\\s*[,!.\\s]*|Buona Giornata\\s*[,!.\\s]*|A Presto\\s*[,!.\\s]*)\"\n",
    "      match = re.search(pattern, text, re.DOTALL)\n",
    "      if match:\n",
    "          extract_text = match.group(1).strip()\n",
    "          return extract_text\n",
    "      else:\n",
    "          return text\n",
    "    else:\n",
    "      return text\n",
    "\n",
    "# Function for cleaning text by apply identify_names, extract_text_from_email functions and more cleaning operations\n",
    "def clean_text(text: str, customers:list=customers) -> str:\n",
    "    \"\"\"\n",
    "    :param text: string with the text of one ticket\n",
    "    :return string the input text cleaning\n",
    "    Cleaning text\n",
    "    \"\"\"\n",
    "    # 1. Remove link\n",
    "    text = extract_text_from_email(text)\n",
    "    text = re.sub(r'http[s]?://\\S+', '', text)\n",
    "    text = re.sub(r'http[s]?://\\S+|www\\.\\S+', '', text)\n",
    "    # 2. Remove email\n",
    "    text = re.sub(r'\\S+@\\S+\\.\\S+', '', text)\n",
    "    # 3. Remove telephone number\n",
    "    text = re.sub(r'\\+?\\d{1,3}[-.\\s]?\\(?\\d{1,4}\\)?[-.\\s]?\\d{1,4}[-.\\s]?\\d{1,9}', '', text)\n",
    "    # 4. Remove special characters\n",
    "    text = re.sub(r'[=*/\\-+[\\]{}(),:;<>]', '', text)\n",
    "    text = re.sub(r'\\b\\w*_\\w*\\b', '', text)\n",
    "    # 5. Remove interruption roe\n",
    "    text = text.replace('\\n', ' ').replace('\\r', ' ')\n",
    "    # 6. Remove multiple white space\n",
    "    text = re.sub(r'\\s+', ' ', text).strip()\n",
    "    # 7. Remove names\n",
    "    words = text.split()\n",
    "    clean_text = [word for word in words if not identify_names(word)]\n",
    "    noise_location = ['sede','via','città','location']\n",
    "    clean_text = [word for word in clean_text if word not in noise_location]\n",
    "    clean_text = ' '.join(clean_text)\n",
    "    clean_text = identify_location(clean_text)\n",
    "    for i in customers:\n",
    "       if i in clean_text:\n",
    "          clean_text = clean_text.replace(i, '').strip()\n",
    "          break\n",
    "    # Remove images\n",
    "    pattern = r\"\\b\\w+\\.(?:png|jpe?g|gif|bmp|tiff|webp)\\b\"\n",
    "    clean_text = re.sub(pattern, '', clean_text, flags=re.IGNORECASE)  # Case insensitive matching\n",
    "    clean_text = clean_text.strip()\n",
    "    return clean_text\n",
    "```\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "hqZaY8WoOA5y"
   },
   "source": [
    "## INSTALL REQUIREMENTS AND IMPORT LIBRARIES"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "lGwh00k_jPGl"
   },
   "outputs": [],
   "source": [
    "! pip install datasets transformers==4.44 sentencepiece evaluate"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "dwg67VFnOI5r"
   },
   "source": [
    "The correct version of Numpy is very important to avoid conflicts with the transformers library, it requires a version lower than 2.0."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "lov-VsxMbyH4"
   },
   "outputs": [],
   "source": [
    "pip install \"numpy<2.0\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "V6NsUqwzJYma"
   },
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import shutil\n",
    "import datasets\n",
    "from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer, pipeline,DataCollatorWithPadding\n",
    "from datasets import Dataset, DatasetDict\n",
    "import numpy as np\n",
    "from sklearn.metrics import mean_absolute_error\n",
    "import re\n",
    "import evaluate\n",
    "from sklearn.model_selection import train_test_split\n",
    "\n",
    "# THIS IS NOT MANDATORY\n",
    "import wandb\n",
    "wandb.init(mode=\"disabled\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "Tr-0jUbeFPYV"
   },
   "source": [
    "# LABEL DEFINITION, MAPPING AND FUNCTIONS"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "WV6ITe2iPKAf"
   },
   "source": [
    "Mapping is critical because it is used within the model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "O2SnJ8F0JBmu"
   },
   "outputs": [],
   "source": [
    "label2id = {\n",
    "    \"Database-DB2\": 4,\n",
    "    \"Database-MS SQL Server\": 15,\n",
    "    \"Database-Oracle\": 5,\n",
    "    \"Hardware-CPU\": 1,\n",
    "    \"Hardware-Disk\": 6,\n",
    "    \"Hardware-Keyboard\": 3,\n",
    "    \"Hardware-Memory\": 13,\n",
    "    \"Hardware-Monitor\": 8,\n",
    "    \"Hardware-Mouse\": 17,\n",
    "    \"Inquiry/Help-Antivirus\": 11,\n",
    "    \"Inquiry/Help-Internal Application\": 7,\n",
    "    \"Network-DHCP\": 14,\n",
    "    \"Network-DNS\": 12,\n",
    "    \"Network-IP Address\": 0,\n",
    "    \"Network-VPN\": 10,\n",
    "    \"Network-Wireless\": 9,\n",
    "    \"Software-Email\": 16,\n",
    "    \"Software-Operating System\": 2\n",
    "  }\n",
    "\n",
    "id2label= {\n",
    "    \"0\": \"Network-IP Address\",\n",
    "    \"1\": \"Hardware-CPU\",\n",
    "    \"2\": \"Software-Operating System\",\n",
    "    \"3\": \"Hardware-Keyboard\",\n",
    "    \"4\": \"Database-DB2\",\n",
    "    \"5\": \"Database-Oracle\",\n",
    "    \"6\": \"Hardware-Disk\",\n",
    "    \"7\": \"Inquiry/Help-Internal Application\",\n",
    "    \"8\": \"Hardware-Monitor\",\n",
    "    \"9\": \"Network-Wireless\",\n",
    "    \"10\": \"Network-VPN\",\n",
    "    \"11\": \"Inquiry/Help-Antivirus\",\n",
    "    \"12\": \"Network-DNS\",\n",
    "    \"13\": \"Hardware-Memory\",\n",
    "    \"14\": \"Network-DHCP\",\n",
    "    \"15\": \"Database-MS SQL Server\",\n",
    "    \"16\": \"Software-Email\",\n",
    "    \"17\": \"Hardware-Mouse\"\n",
    "  }"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "oYrIxDytPFOu"
   },
   "outputs": [],
   "source": [
    "accuracy = evaluate.load(\"accuracy\")\n",
    "def compute_metrics(eval_pred):\n",
    "    predictions, labels = eval_pred\n",
    "    predictions = np.argmax(predictions, axis=1)\n",
    "    return accuracy.compute(predictions=predictions, references=labels)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "Lgyt6owmTc27"
   },
   "source": [
    "##  IMPORTANT CHECK\n",
    "Please check that you have balanced and proportionate classes, otherwise below you will find 2 versions:\n",
    "- Fine-tuning for balanced classes\n",
    "- Fine-tuning for unbalanced classes"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "QeZAYpTkuCoA"
   },
   "outputs": [],
   "source": [
    "df = pd.read_excel('your_file.xlsx')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "lGD4baiputPJ"
   },
   "outputs": [],
   "source": [
    "check_balanced_class = df.groupby('label').size().reset_index(name='count').sort_values(by='count')\n",
    "check_balanced_class"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "chKa0cwtJu6o"
   },
   "source": [
    "# Fine Tuning"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "ZB3pJT4QJxWl"
   },
   "outputs": [],
   "source": [
    "model_checkpoint = \"FacebookAI/xlm-roberta-base\"\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)\n",
    "def preprocess_function(examples):\n",
    "    return tokenizer(examples[\"text\"], truncation=True)\n",
    "model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "XT6d52KqFdG6"
   },
   "source": [
    "The tokenization process outputs 2 things:\n",
    "- input_ids is text encoding\n",
    "- attention_mask tokens to ignore for the transformer's self-attention mechanism\n",
    "\n",
    "\n",
    "**data_collator** it's usefull becaus It is used to create batches of sequences of variable lengths efficiently by adding dynamic padding to even out the length of the sequences within the batch. Padding is necessary because deep learning models require inputs of constant length in order to be processed."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "p6KorhLmQmmc"
   },
   "source": [
    "Remember to map to your classes and switch from string type to integer numeric type."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "KoDXWXaMQmHw"
   },
   "outputs": [],
   "source": [
    "df['label'] = df['label'].map(label2id)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "hQ_ybPUyQtsT"
   },
   "source": [
    "We remanipulate the shape of the dataset so that we have the desired shape for training with DatasetDict function. Important part is to choose to split your dataset in a stratify way, with: **stratify=df['label']**."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "VFMn5eBSchZ3"
   },
   "outputs": [],
   "source": [
    "# spli df in training and test with stratift way based on your labels\n",
    "train_set, test_set = train_test_split(df, test_size=0.2, stratify=df['label'], random_state=42)\n",
    "\n",
    "train_set = Dataset.from_dict(train_set)\n",
    "test_set = Dataset.from_dict(test_set)\n",
    "\n",
    "# Manipulate shape of df\n",
    "df_dict = datasets.DatasetDict({\"train\":train_set,\"test\":test_set})\n",
    "\n",
    "# Tokenization and padding\n",
    "tokenized= df_dict.map(preprocess_function, batched=True)\n",
    "data_collator = DataCollatorWithPadding(tokenizer=tokenizer)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "nsTiJf23RUaF"
   },
   "source": [
    "## FINE TUNING WITH BALANCED CLASS\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "hcS29WR6QDGy",
    "outputId": "da21f2dc-1220-40c9-a785-8c45f4dda727"
   },
   "outputs": [],
   "source": [
    "model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=len(id2label), id2label=id2label, label2id=label2id)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "6uBDXlUSWQfd"
   },
   "outputs": [],
   "source": [
    "training_args = TrainingArguments(\n",
    "    output_dir=\"\", #SPECIFY YOUR OUTPUT DIRECTORY\n",
    "    learning_rate=2e-5,\n",
    "    per_device_train_batch_size=32,\n",
    "    per_device_eval_batch_size=32,\n",
    "    num_train_epochs=7,\n",
    "    weight_decay=0.01,\n",
    "    evaluation_strategy=\"epoch\",\n",
    "    save_strategy=\"epoch\",\n",
    "    load_best_model_at_end=True,\n",
    "    #push_to_hub=False,\n",
    ")\n",
    "\n",
    "\n",
    "trainer = Trainer(\n",
    "    model=model,\n",
    "    args=training_args,\n",
    "    train_dataset=tokenized[\"train\"],\n",
    "    eval_dataset=tokenized[\"test\"],\n",
    "    tokenizer=tokenizer,\n",
    "    data_collator=data_collator,\n",
    "    compute_metrics=compute_metrics,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "BS1cT7xOZEfd"
   },
   "outputs": [],
   "source": [
    "trainer.train()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "hp2CoEQQKxQM"
   },
   "outputs": [],
   "source": [
    "trainer.save_model(\"\") #SPECIFY WHERE SAVE MODEL"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "8duf4N5fRtz-"
   },
   "source": [
    "If you want to save a local version for download you can zip the template, select the last checkpoint."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "8xrL_XZqO2xQ"
   },
   "outputs": [],
   "source": [
    "shutil.make_archive('path where save the zip', 'zip', 'path to last checkpoint that contains the model')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "VIf0qmmOWNtA"
   },
   "source": [
    "## FINE TUNING WITH UNBALANCED CLASS"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "OxckCVGvSW9h"
   },
   "source": [
    "## IMPORT ADDITIONAL LIBRARIES AND FUNCTIONS"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "7J0SBDE_tokB"
   },
   "outputs": [],
   "source": [
    "from collections import Counter\n",
    "import torch\n",
    "from torch import nn\n",
    "\n",
    "# Count the labels of each class in the training dataset\n",
    "label_counts = Counter(tokenized[\"train\"][\"label\"])\n",
    "\n",
    "# Calculate weights inversely proportional to frequency\n",
    "total_samples = len(tokenized[\"train\"][\"label\"])\n",
    "class_weights = {label: total_samples / count for label, count in label_counts.items()}\n",
    "\n",
    "# Convert to a tensor to pass to PyTorch\n",
    "class_weights_tensor = torch.tensor([class_weights[i] for i in range(len(class_weights))], dtype=torch.float)\n",
    "\n",
    "# Define a custom loss function\n",
    "class WeightedTrainer(Trainer):\n",
    "    def compute_loss(self, model, inputs, return_outputs=False):\n",
    "        labels = inputs.get(\"labels\")\n",
    "        outputs = model(**inputs)\n",
    "        logits = outputs.get(\"logits\")\n",
    "\n",
    "        if labels is None:\n",
    "            return outputs if return_outputs else None\n",
    "        loss_fct = nn.CrossEntropyLoss(weight=class_weights_tensor.to(logits.device))\n",
    "        loss = loss_fct(logits.view(-1, self.model.config.num_labels), labels.view(-1))\n",
    "        return (loss, outputs) if return_outputs else loss"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "6Ts1wkt9T99-"
   },
   "source": [
    "## Fine-tuning Model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "-_wNVfq6T8TF"
   },
   "outputs": [],
   "source": [
    "model_checkpoint = \"FacebookAI/xlm-roberta-base\"\n",
    "batch_size = 16\n",
    "num_train_epochs = 8\n",
    "logging_steps = len(tokenized[\"train\"]) // (batch_size * num_train_epochs)\n",
    "\n",
    "model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=len(id2label), id2label=id2label, label2id=label2id)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "lugCcXL8R3iT"
   },
   "outputs": [],
   "source": [
    "args = TrainingArguments(\n",
    "    output_dir=\"\",#SPECIFY YOUR OUTPUT DIRECTORY\n",
    "    evaluation_strategy = \"epoch\",\n",
    "    save_strategy = \"epoch\",\n",
    "    learning_rate=2e-5,\n",
    "    per_device_train_batch_size=batch_size,\n",
    "    per_device_eval_batch_size=batch_size,\n",
    "    num_train_epochs=num_train_epochs,\n",
    "    weight_decay=0.01,\n",
    "    logging_steps=logging_steps,\n",
    "    report_to=\"none\",\n",
    ")\n",
    "\n",
    "trainer = WeightedTrainer(\n",
    "    model=model,\n",
    "    args=args,\n",
    "    train_dataset=tokenized[\"train\"],\n",
    "    eval_dataset=tokenized[\"test\"],\n",
    "    tokenizer=tokenizer,\n",
    "    compute_metrics=compute_metrics\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "bcQvM_aHSo_V"
   },
   "outputs": [],
   "source": [
    "trainer.train()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "VFc9RfrcUUIJ"
   },
   "outputs": [],
   "source": [
    "trainer.save_model(\"\") #SPECIFY WHERE SAVE MODEL"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "zE1LdtalUc3Q"
   },
   "source": [
    "If you want to save a local version for download you can zip the template, select the last checkpoint.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "8ISI1LGqUbZy"
   },
   "outputs": [],
   "source": [
    "shutil.make_archive('path where save the zip', 'zip', 'path to last checkpoint that contains the model')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "g645l1jfUC_m"
   },
   "source": [
    "## INFERENCE WITH MODEL"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "W7ejTyHhTDTl"
   },
   "outputs": [],
   "source": [
    "finetuned_checkpoint = \"\" # PATH OF YOUR LAST CHECKPOINT OF FINE-TUNED MODEL\n",
    "classifier = pipeline(\"text-classification\", model=finetuned_checkpoint)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "RvigAskV_eA2"
   },
   "outputs": [],
   "source": [
    "text = clean_text(\"\"\"vpn not working\"\"\")\n",
    "classifier(text)"
   ]
  }
 ],
 "metadata": {
  "accelerator": "GPU",
  "colab": {
   "gpuType": "T4",
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3",
   "name": "python3"
  },
  "language_info": {
   "name": "python"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}