{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9513103a80>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674298720378132530, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFqacT8Bgsy+eTKdPoKz5T/w9wS9oFrKPmEdI78hCVm/1FZbvZBWCr4ppzQ/T/W+PlGE3b9+z56/VN4PPxM7ib57Phy/rmSGvykdm74GEfQ+xmy3v8Y6PTvV0wo/fOUkP/v08z5vFZ0+LXISP4Ylhb/zVKo/tRJbv4XxwL4Rudw/ow6av0UHZj8s/n2/jupAvvp6jj0KdQRALXFnvNMuZb4OKpW/C50CP7jEJz9S+m0/DeDJv2Ibljw1TJO/bQaUPnNPh79unFM/tnvRPYpJBD/79PM+I5pQwC1yEj+GJYW/We/1PhS6H78frzc96tMSP/3/Tb5CtUM/S4B3v0gcOT5VGr+/S58nPBfLK74aD5Y+gsxbvwM8Wr8t9yU/e8iyPJklnj+EhaW/t2vYv7dDmb5lMSg/SHrzv4HUAj+6KWK/+/TzPm8VnT4tchI/hiWFv9Jooj80gIg/0giEPzJ55j9q050+dqhEwJGiAr9fLoG957B9P+SZHcCD3DW/sqWJPnfY6b8CY/q9wru7PEyPY8CDuHm+Hb06QP5mQL9C3J28f7+6vXvlDkAJ7mk+ME9nPptRBsBvFZ0+PMHfv4Ylhb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADfypC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgVb0PQAAAACUxPW/AAAAAMPSOL0AAAAAgDgAQAAAAADm7Y69AAAAAILf9z8AAAAAckAzvQAAAABDfu6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVlN1tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFmJqD0AAAAA6YjgvwAAAAAmwKA9AAAAAIQ83T8AAAAAVEPRvQAAAADUgOo/AAAAAOIwUz0AAAAAlUsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFDugzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDfHLG9AAAAAJVi9L8AAAAA75LVPAAAAACeru0/AAAAAPe5sj0AAAAAwPH3PwAAAAAgEfg8AAAAAP7z778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACeJS61AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAnpAXvAAAAABj5P6/AAAAAKJ6Db4AAAAAW6faPwAAAAB0aaI9AAAAAAyD9D8AAAAAoPVnvAAAAAA3Cu+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJa4yBreqJeMAWyUTegDjAF0lEdAroZ3HT7VKHV9lChoBkdAliUZ0GNaQmgHTegDaAhHQK6MZKB/Zuh1fZQoaAZHQJZf1s41gploB03oA2gIR0CujzLfUF0QdX2UKGgGR0CWvqVVxS5zaAdN6ANoCEdAro9//rB0p3V9lChoBkdAl1WFSwW30GgHTegDaAhHQK6WFb/wRXh1fZQoaAZHQJXA3rhR64VoB03oA2gIR0Cum/LLhaTwdX2UKGgGR0CTYOCtzS1FaAdN6ANoCEdArp616/qPfnV9lChoBkdAlNpBBmf5DmgHTegDaAhHQK6fArCFbml1fZQoaAZHQJW3n8CPp6hoB03oA2gIR0CupYWWIGhVdX2UKGgGR0CTZ2kuYhMbaAdN6ANoCEdArqtpnpSrHXV9lChoBkdAlJgI3rD632gHTegDaAhHQK6uQQKa5PN1fZQoaAZHQJWPvBuXNTtoB03oA2gIR0Curo+jM3ZPdX2UKGgGR0CUqKJZW7voaAdN6ANoCEdArrUVmOEM9nV9lChoBkdAlLjPUaya/mgHTegDaAhHQK67EZTAFgV1fZQoaAZHQJMl8wDeTFFoB03oA2gIR0CuveDOC5EudX2UKGgGR0CSapMpw0fpaAdN6ANoCEdArr4uy5Zr6HV9lChoBkdAkoUFnRLK3mgHTegDaAhHQK7Ewx7AtWd1fZQoaAZHQJDg6a8YhuBoB03oA2gIR0CuyrUiyIHkdX2UKGgGR0CS2uaPjn3daAdN6ANoCEdArs18xZdOZnV9lChoBkdAkh8nVG0/nmgHTegDaAhHQK7NzJVbRnh1fZQoaAZHQJKv3AoG6f9oB03oA2gIR0Cu1GWkzoECdX2UKGgGR0CRtQHE/B3zaAdN6ANoCEdArtpx/oaDPHV9lChoBkdAhZr7xd6cAmgHTegDaAhHQK7dS5HVf/p1fZQoaAZHQIdEBu89Oh1oB03oA2gIR0Cu3Zp1zQu3dX2UKGgGR0CRCUi3ocJdaAdN6ANoCEdAruUlFlTWG3V9lChoBkdAkG02Mn7YTWgHTegDaAhHQK7ureNT9891fZQoaAZHQI6nzKNhmXhoB03oA2gIR0Cu8X7yYoiLdX2UKGgGR0CQ0fCK77KraAdN6ANoCEdArvHQSteUp3V9lChoBkdAke9Ei+tbLWgHTegDaAhHQK74UxqO9391fZQoaAZHQI8vbqlgtvpoB03oA2gIR0Cu/kbbtZ3cdX2UKGgGR0CNndUjs2NvaAdN6ANoCEdArwES90zTF3V9lChoBkdAj0AECmuTzWgHTegDaAhHQK8BXkcS5Ah1fZQoaAZHQJDuEspXp4doB03oA2gIR0CvB+g75mAcdX2UKGgGR0CSn4pnYg7paAdN6ANoCEdArw3mJm/WUnV9lChoBkdAjwqBw++ueWgHTegDaAhHQK8QuD8Lrop1fZQoaAZHQJHoWShakh1oB03oA2gIR0CvEQRradtmdX2UKGgGR0CTMt82aUiZaAdN6ANoCEdArxeeyeI2wXV9lChoBkdAkdICsKb8WWgHTegDaAhHQK8dgz41xbV1fZQoaAZHQJA6lP0qYqpoB03oA2gIR0CvIDwd0aIfdX2UKGgGR0CRoNjkdV/+aAdN6ANoCEdAryCMXxe9jHV9lChoBkdAkDp59Vmz0GgHTegDaAhHQK8nGXxe9jB1fZQoaAZHQJJiWNIbwSdoB03oA2gIR0CvLQ1kDp1SdX2UKGgGR0CSOTrZrYXgaAdN6ANoCEdAry/m2y9mH3V9lChoBkdAkWyAu/UONGgHTegDaAhHQK8wNvYvnKZ1fZQoaAZHQIxbV+G47RxoB03oA2gIR0CvNtk5hjOLdX2UKGgGR0CN0vjcVQANaAdN6ANoCEdArzzpas6q83V9lChoBkdAjC1xY7q6fGgHTegDaAhHQK8/xBC2MKl1fZQoaAZHQI+uO4Cp3otoB03oA2gIR0CvQBRaX8fndX2UKGgGR0CQewNJe3QVaAdN6ANoCEdAr0bJh6SkkHV9lChoBkdAdhSmvW6K+GgHTegDaAhHQK9MxEsrd311fZQoaAZHQJHu4YJmdy1oB03oA2gIR0CvT4+CkGiYdX2UKGgGR0CRV/1G9YfXaAdN6ANoCEdAr0/eNWEK3XV9lChoBkdAjbEJIUahpWgHTegDaAhHQK9WcXoC+111fZQoaAZHQI9JrnDBMzxoB03oA2gIR0CvXFau4gA7dX2UKGgGR0CR1PgzP8htaAdN6ANoCEdAr18gT7EYO3V9lChoBkdAkaLwyqMm4WgHTegDaAhHQK9fbaX8fmt1fZQoaAZHQJGYjcbiqABoB03oA2gIR0CvZhz8gpz+dX2UKGgGR0CQjT0ZWJaaaAdN6ANoCEdAr2wgv+OwPnV9lChoBkdAiiC9DIBBA2gHTegDaAhHQK9vAvyLAHp1fZQoaAZHQHgVBYV6/qRoB03oA2gIR0Cvb1JXhfjTdX2UKGgGR0CJUmrn1WbPaAdN6ANoCEdAr3X2evpyInV9lChoBkdAiI5hS9/SY2gHTegDaAhHQK98D67dzn11fZQoaAZHQHk80iY9gWtoB03oA2gIR0CvfuxkmQbNdX2UKGgGR0CLha5XEIgOaAdN6ANoCEdAr39BGpda+3V9lChoBkdAj1e32/SH/WgHTegDaAhHQK+Fz/I8yN51fZQoaAZHQI8TBPykKu1oB03oA2gIR0Cvi8GKyfL+dX2UKGgGR0CJtxJbMX7+aAdN6ANoCEdAr46OIEbHZXV9lChoBkdAjB/s3yZrpWgHTegDaAhHQK+O20GeMAF1fZQoaAZHQIkyq+WWyC5oB03oA2gIR0CvlWTtTkyUdX2UKGgGR0CHrqD7IkquaAdN6ANoCEdAr5tPvhIe5nV9lChoBkdAip42SlnAZmgHTegDaAhHQK+eHb3XZoR1fZQoaAZHQIuHGjynUDxoB03oA2gIR0CvnmnTI/7jdX2UKGgGR0CJ6r1Tzd1uaAdN6ANoCEdAr6UCbtqpLnV9lChoBkdAitCHMdLg42gHTegDaAhHQK+q5LYf4h51fZQoaAZHQIvvfcvduYRoB03oA2gIR0CvrbJhnanKdX2UKGgGR0CQCl6VMVUNaAdN6ANoCEdAr63+p2ll9XV9lChoBkdAjzlfT9bX6WgHTegDaAhHQK+0hjNpudh1fZQoaAZHQJHDlHXmNipoB03oA2gIR0CvumFl9SdfdX2UKGgGR0CSMaKSxJNCaAdN6ANoCEdAr70nYcvM83V9lChoBkdAka4iYG+sYGgHTegDaAhHQK+9d47A+IN1fZQoaAZHQJGnVP69CeFoB03oA2gIR0Cvw/Io/iYLdX2UKGgGR0CSb0AGB4D+aAdN6ANoCEdAr8niISDh+HV9lChoBkdAkWTcFY+0PmgHTegDaAhHQK/MpsImgJ11fZQoaAZHQJAjIYGdI5JoB03oA2gIR0CvzPMlLOAzdX2UKGgGR0CQ1NNEw35vaAdN6ANoCEdAr9OKBoVVP3V9lChoBkdAkA2bmMfigmgHTegDaAhHQK/Zc3rD6311fZQoaAZHQJHrqfHxSYRoB03oA2gIR0Cv3DzPrv9cdX2UKGgGR0CSEAt3fQ8faAdN6ANoCEdAr9yLZDiOvXV9lChoBkdAkU/70J4SpWgHTegDaAhHQK/jJMhX8wZ1fZQoaAZHQJDE8pH7P6doB03oA2gIR0Cv6SAWzniedX2UKGgGR0CRmIM9KVY7aAdN6ANoCEdAr+zqAhB7eHV9lChoBkdAkf2tAood/GgHTegDaAhHQK/tZmCiAUd1fZQoaAZHQJMUpFVktmNoB03oA2gIR0Cv92TSsr/bdX2UKGgGR0CR4GsfaHsUaAdN6ANoCEdAr/1bebd8A3V9lChoBkdAkLB8cp9ZzWgHTegDaAhHQLAAERCx/ut1fZQoaAZHQJKWe8274BVoB03oA2gIR0CwADlCPZIydX2UKGgGR0CS4lQXyiEhaAdN6ANoCEdAsAN9A3T/hnV9lChoBkdAk4QIZQ53kmgHTegDaAhHQLAGdJxvNvB1fZQoaAZHQJQxDgvUSZloB03oA2gIR0CwB9rZi/fwdX2UKGgGR0CS4bfRu0kXaAdN6ANoCEdAsAgBId2gWnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}