Kaushik S
commited on
Commit
·
afeab97
1
Parent(s):
502df7a
Initial commit
Browse files- .gitattributes +1 -0
- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +2 -2
- a2c-AntBulletEnv-v0/data +17 -17
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 1274.74 +/- 73.91
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e78d11a3111d65976fc2e5c20f2b040d02b32f772f8e28cb1d1339330ce8b92
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
@@ -64,7 +64,7 @@
|
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
-
"start_time":
|
68 |
"learning_rate": 0.00096,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
@@ -73,7 +73,7 @@
|
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
-
":serialized:": "
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -81,7 +81,7 @@
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
-
":serialized:": "
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
@@ -89,7 +89,7 @@
|
|
89 |
"_current_progress_remaining": 0.0,
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
-
":serialized:": "
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9513109d30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9513109dc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9513109e50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9513109ee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9513109f70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f951310d040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f951310d0d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f951310d160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f951310d1f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f951310d280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f951310d310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f951310d3a0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f9513103a80>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
|
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
+
"start_time": 1674298720378132530,
|
68 |
"learning_rate": 0.00096,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
|
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFqacT8Bgsy+eTKdPoKz5T/w9wS9oFrKPmEdI78hCVm/1FZbvZBWCr4ppzQ/T/W+PlGE3b9+z56/VN4PPxM7ib57Phy/rmSGvykdm74GEfQ+xmy3v8Y6PTvV0wo/fOUkP/v08z5vFZ0+LXISP4Ylhb/zVKo/tRJbv4XxwL4Rudw/ow6av0UHZj8s/n2/jupAvvp6jj0KdQRALXFnvNMuZb4OKpW/C50CP7jEJz9S+m0/DeDJv2Ibljw1TJO/bQaUPnNPh79unFM/tnvRPYpJBD/79PM+I5pQwC1yEj+GJYW/We/1PhS6H78frzc96tMSP/3/Tb5CtUM/S4B3v0gcOT5VGr+/S58nPBfLK74aD5Y+gsxbvwM8Wr8t9yU/e8iyPJklnj+EhaW/t2vYv7dDmb5lMSg/SHrzv4HUAj+6KWK/+/TzPm8VnT4tchI/hiWFv9Jooj80gIg/0giEPzJ55j9q050+dqhEwJGiAr9fLoG957B9P+SZHcCD3DW/sqWJPnfY6b8CY/q9wru7PEyPY8CDuHm+Hb06QP5mQL9C3J28f7+6vXvlDkAJ7mk+ME9nPptRBsBvFZ0+PMHfv4Ylhb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADfypC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgVb0PQAAAACUxPW/AAAAAMPSOL0AAAAAgDgAQAAAAADm7Y69AAAAAILf9z8AAAAAckAzvQAAAABDfu6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVlN1tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFmJqD0AAAAA6YjgvwAAAAAmwKA9AAAAAIQ83T8AAAAAVEPRvQAAAADUgOo/AAAAAOIwUz0AAAAAlUsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFDugzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDfHLG9AAAAAJVi9L8AAAAA75LVPAAAAACeru0/AAAAAPe5sj0AAAAAwPH3PwAAAAAgEfg8AAAAAP7z778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACeJS61AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAnpAXvAAAAABj5P6/AAAAAKJ6Db4AAAAAW6faPwAAAAB0aaI9AAAAAAyD9D8AAAAAoPVnvAAAAAA3Cu+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
|
|
89 |
"_current_progress_remaining": 0.0,
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJa4yBreqJeMAWyUTegDjAF0lEdAroZ3HT7VKHV9lChoBkdAliUZ0GNaQmgHTegDaAhHQK6MZKB/Zuh1fZQoaAZHQJZf1s41gploB03oA2gIR0CujzLfUF0QdX2UKGgGR0CWvqVVxS5zaAdN6ANoCEdAro9//rB0p3V9lChoBkdAl1WFSwW30GgHTegDaAhHQK6WFb/wRXh1fZQoaAZHQJXA3rhR64VoB03oA2gIR0Cum/LLhaTwdX2UKGgGR0CTYOCtzS1FaAdN6ANoCEdArp616/qPfnV9lChoBkdAlNpBBmf5DmgHTegDaAhHQK6fArCFbml1fZQoaAZHQJW3n8CPp6hoB03oA2gIR0CupYWWIGhVdX2UKGgGR0CTZ2kuYhMbaAdN6ANoCEdArqtpnpSrHXV9lChoBkdAlJgI3rD632gHTegDaAhHQK6uQQKa5PN1fZQoaAZHQJWPvBuXNTtoB03oA2gIR0Curo+jM3ZPdX2UKGgGR0CUqKJZW7voaAdN6ANoCEdArrUVmOEM9nV9lChoBkdAlLjPUaya/mgHTegDaAhHQK67EZTAFgV1fZQoaAZHQJMl8wDeTFFoB03oA2gIR0CuveDOC5EudX2UKGgGR0CSapMpw0fpaAdN6ANoCEdArr4uy5Zr6HV9lChoBkdAkoUFnRLK3mgHTegDaAhHQK7Ewx7AtWd1fZQoaAZHQJDg6a8YhuBoB03oA2gIR0CuyrUiyIHkdX2UKGgGR0CS2uaPjn3daAdN6ANoCEdArs18xZdOZnV9lChoBkdAkh8nVG0/nmgHTegDaAhHQK7NzJVbRnh1fZQoaAZHQJKv3AoG6f9oB03oA2gIR0Cu1GWkzoECdX2UKGgGR0CRtQHE/B3zaAdN6ANoCEdArtpx/oaDPHV9lChoBkdAhZr7xd6cAmgHTegDaAhHQK7dS5HVf/p1fZQoaAZHQIdEBu89Oh1oB03oA2gIR0Cu3Zp1zQu3dX2UKGgGR0CRCUi3ocJdaAdN6ANoCEdAruUlFlTWG3V9lChoBkdAkG02Mn7YTWgHTegDaAhHQK7ureNT9891fZQoaAZHQI6nzKNhmXhoB03oA2gIR0Cu8X7yYoiLdX2UKGgGR0CQ0fCK77KraAdN6ANoCEdArvHQSteUp3V9lChoBkdAke9Ei+tbLWgHTegDaAhHQK74UxqO9391fZQoaAZHQI8vbqlgtvpoB03oA2gIR0Cu/kbbtZ3cdX2UKGgGR0CNndUjs2NvaAdN6ANoCEdArwES90zTF3V9lChoBkdAj0AECmuTzWgHTegDaAhHQK8BXkcS5Ah1fZQoaAZHQJDuEspXp4doB03oA2gIR0CvB+g75mAcdX2UKGgGR0CSn4pnYg7paAdN6ANoCEdArw3mJm/WUnV9lChoBkdAjwqBw++ueWgHTegDaAhHQK8QuD8Lrop1fZQoaAZHQJHoWShakh1oB03oA2gIR0CvEQRradtmdX2UKGgGR0CTMt82aUiZaAdN6ANoCEdArxeeyeI2wXV9lChoBkdAkdICsKb8WWgHTegDaAhHQK8dgz41xbV1fZQoaAZHQJA6lP0qYqpoB03oA2gIR0CvIDwd0aIfdX2UKGgGR0CRoNjkdV/+aAdN6ANoCEdAryCMXxe9jHV9lChoBkdAkDp59Vmz0GgHTegDaAhHQK8nGXxe9jB1fZQoaAZHQJJiWNIbwSdoB03oA2gIR0CvLQ1kDp1SdX2UKGgGR0CSOTrZrYXgaAdN6ANoCEdAry/m2y9mH3V9lChoBkdAkWyAu/UONGgHTegDaAhHQK8wNvYvnKZ1fZQoaAZHQIxbV+G47RxoB03oA2gIR0CvNtk5hjOLdX2UKGgGR0CN0vjcVQANaAdN6ANoCEdArzzpas6q83V9lChoBkdAjC1xY7q6fGgHTegDaAhHQK8/xBC2MKl1fZQoaAZHQI+uO4Cp3otoB03oA2gIR0CvQBRaX8fndX2UKGgGR0CQewNJe3QVaAdN6ANoCEdAr0bJh6SkkHV9lChoBkdAdhSmvW6K+GgHTegDaAhHQK9MxEsrd311fZQoaAZHQJHu4YJmdy1oB03oA2gIR0CvT4+CkGiYdX2UKGgGR0CRV/1G9YfXaAdN6ANoCEdAr0/eNWEK3XV9lChoBkdAjbEJIUahpWgHTegDaAhHQK9WcXoC+111fZQoaAZHQI9JrnDBMzxoB03oA2gIR0CvXFau4gA7dX2UKGgGR0CR1PgzP8htaAdN6ANoCEdAr18gT7EYO3V9lChoBkdAkaLwyqMm4WgHTegDaAhHQK9fbaX8fmt1fZQoaAZHQJGYjcbiqABoB03oA2gIR0CvZhz8gpz+dX2UKGgGR0CQjT0ZWJaaaAdN6ANoCEdAr2wgv+OwPnV9lChoBkdAiiC9DIBBA2gHTegDaAhHQK9vAvyLAHp1fZQoaAZHQHgVBYV6/qRoB03oA2gIR0Cvb1JXhfjTdX2UKGgGR0CJUmrn1WbPaAdN6ANoCEdAr3X2evpyInV9lChoBkdAiI5hS9/SY2gHTegDaAhHQK98D67dzn11fZQoaAZHQHk80iY9gWtoB03oA2gIR0CvfuxkmQbNdX2UKGgGR0CLha5XEIgOaAdN6ANoCEdAr39BGpda+3V9lChoBkdAj1e32/SH/WgHTegDaAhHQK+Fz/I8yN51fZQoaAZHQI8TBPykKu1oB03oA2gIR0Cvi8GKyfL+dX2UKGgGR0CJtxJbMX7+aAdN6ANoCEdAr46OIEbHZXV9lChoBkdAjB/s3yZrpWgHTegDaAhHQK+O20GeMAF1fZQoaAZHQIkyq+WWyC5oB03oA2gIR0CvlWTtTkyUdX2UKGgGR0CHrqD7IkquaAdN6ANoCEdAr5tPvhIe5nV9lChoBkdAip42SlnAZmgHTegDaAhHQK+eHb3XZoR1fZQoaAZHQIuHGjynUDxoB03oA2gIR0CvnmnTI/7jdX2UKGgGR0CJ6r1Tzd1uaAdN6ANoCEdAr6UCbtqpLnV9lChoBkdAitCHMdLg42gHTegDaAhHQK+q5LYf4h51fZQoaAZHQIvvfcvduYRoB03oA2gIR0CvrbJhnanKdX2UKGgGR0CQCl6VMVUNaAdN6ANoCEdAr63+p2ll9XV9lChoBkdAjzlfT9bX6WgHTegDaAhHQK+0hjNpudh1fZQoaAZHQJHDlHXmNipoB03oA2gIR0CvumFl9SdfdX2UKGgGR0CSMaKSxJNCaAdN6ANoCEdAr70nYcvM83V9lChoBkdAka4iYG+sYGgHTegDaAhHQK+9d47A+IN1fZQoaAZHQJGnVP69CeFoB03oA2gIR0Cvw/Io/iYLdX2UKGgGR0CSb0AGB4D+aAdN6ANoCEdAr8niISDh+HV9lChoBkdAkWTcFY+0PmgHTegDaAhHQK/MpsImgJ11fZQoaAZHQJAjIYGdI5JoB03oA2gIR0CvzPMlLOAzdX2UKGgGR0CQ1NNEw35vaAdN6ANoCEdAr9OKBoVVP3V9lChoBkdAkA2bmMfigmgHTegDaAhHQK/Zc3rD6311fZQoaAZHQJHrqfHxSYRoB03oA2gIR0Cv3DzPrv9cdX2UKGgGR0CSEAt3fQ8faAdN6ANoCEdAr9yLZDiOvXV9lChoBkdAkU/70J4SpWgHTegDaAhHQK/jJMhX8wZ1fZQoaAZHQJDE8pH7P6doB03oA2gIR0Cv6SAWzniedX2UKGgGR0CRmIM9KVY7aAdN6ANoCEdAr+zqAhB7eHV9lChoBkdAkf2tAood/GgHTegDaAhHQK/tZmCiAUd1fZQoaAZHQJMUpFVktmNoB03oA2gIR0Cv92TSsr/bdX2UKGgGR0CR4GsfaHsUaAdN6ANoCEdAr/1bebd8A3V9lChoBkdAkLB8cp9ZzWgHTegDaAhHQLAAERCx/ut1fZQoaAZHQJKWe8274BVoB03oA2gIR0CwADlCPZIydX2UKGgGR0CS4lQXyiEhaAdN6ANoCEdAsAN9A3T/hnV9lChoBkdAk4QIZQ53kmgHTegDaAhHQLAGdJxvNvB1fZQoaAZHQJQxDgvUSZloB03oA2gIR0CwB9rZi/fwdX2UKGgGR0CS4bfRu0kXaAdN6ANoCEdAsAgBId2gWnVlLg=="
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56190
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:564f9f32a43aef7953dfb2cbae0dde0fd79de78d0d8c268cd570ae4c3688f37a
|
3 |
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56958
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fdef4dde6f5099a751cd09d86f8dc840826ecb0b92b48e1970716da4f8bab01
|
3 |
size 56958
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f248a938550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f248a9385e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f248a938670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f248a938700>", "_build": "<function ActorCriticPolicy._build at 0x7f248a938790>", "forward": "<function ActorCriticPolicy.forward at 0x7f248a938820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f248a9388b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f248a938940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f248a9389d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f248a938a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f248a938af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f248a938b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f248a9345d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674295458805150283, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD47ez/ybNg/b0PBvvWGLD+uQp+/LBFCwAfowz1CK1G/phE0P4AWk78uhHs/c8tMPyIzNT/hf1M/PFiZPjcGrr8PAba/3jygP4VTQT8Q/OG9SBv9vi2nn71KvTW+8O7vP+0kEz+MGbk+kNLtvyu6pL96Uws/YjoIQA/zOsDwm/A+DgsLPg3Qtr9ZemA7ld2mv2WAWT/VqC2/kfZCP9U8Iz+0hJq+pvSrP8lAOj809Zu9hI69PhHdDkB6LEQ/uZBNvqAT3r4Q9VA/hcOEvmJ+5D/tJBM/jBm5PpDS7b8ruqS/0f8RP6L9hz5L+RQ/2XA0P6uHk7/diQA/jx2VPRQJ/L853L2/siREwBbplj9uPFO/Up9Kv/ogiz8CIz8/T0SYP5/WnT+RjjVAasv5PtOb8b+wYD6/eJFYPUI/BkCJx24/a7Hev4wZuT6Q0u2/POxGP6+BnT/j7Mq+nSz2Pvkj5z7oNrK/iw/UPoW4B72VMUq/ar3CPElIzT8bPqg/SYcmvtneI7770tA+XTwEvTB2hj+AebW/pF8Bv2tY0D1RQQ8/BTA+v2ysk72PUzK/cfV4Pu0kEz+MGbk+jsgJPyu6pL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB3tAo2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAtNLkvQAAAADa7/y/AAAAACz+rr0AAAAApu7hPwAAAAA5DOk9AAAAAGd34D8AAAAA8X1XPQAAAADRK/q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS7yRNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAtxebsAAAAA/b7uvwAAAAD01AM+AAAAAPrq4D8AAAAAydV/vAAAAACPIuQ/AAAAAJIEhr0AAAAAa8vrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/mjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC6cUi8AAAAAA996r8AAAAA3H0APgAAAADgR+E/AAAAAFJK670AAAAAImv5PwAAAADtOtO8AAAAAEZi778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmf/S1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACABvHsuwAAAAA/fO+/AAAAAJo+p70AAAAAgav2PwAAAAD37KK9AAAAAEhe/z8AAAAAEaqlvQAAAACC79i/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIcZIX0oScuMAWyUTegDjAF0lEdAqppDI5o4/HV9lChoBkdAjyZ5Mtbs4WgHTegDaAhHQKqemKLKmsN1fZQoaAZHQIqwoQxvegtoB03oA2gIR0Cqn3IqLCN0dX2UKGgGR0CJdt6N2ki2aAdN6ANoCEdAqqVtpPAO8XV9lChoBkdAhGQIVEd/8WgHTegDaAhHQKqmbJtBOYZ1fZQoaAZHQIO0+AuqWC5oB03oA2gIR0CqquGtITXbdX2UKGgGR0CO4VNB4UvgaAdN6ANoCEdAqqu7TF2mpHV9lChoBkdAgVGdK/VRUGgHTegDaAhHQKqxoysS00F1fZQoaAZHQIjIk/pt78hoB03oA2gIR0CqsqI9C/oJdX2UKGgGR0CAZG1Muez2aAdN6ANoCEdAqrb9RBNVR3V9lChoBkdAjZz94/u9e2gHTegDaAhHQKq3yWFev6l1fZQoaAZHQH52KsZHd45oB03oA2gIR0CqvY7v5P/JdX2UKGgGR0CGvowPiDNAaAdN6ANoCEdAqr6O7SRbKXV9lChoBkdAjF1j7qIJq2gHTegDaAhHQKrC4k5ZKWd1fZQoaAZHQI+eNEJBw/BoB03oA2gIR0Cqw68Md92HdX2UKGgGR0CLfIDfWMCLaAdN6ANoCEdAqsmPpljEvXV9lChoBkfANFiydFvyb2gHTegDaAhHQKrKmEug6EJ1fZQoaAZHQHdMnDNyHVRoB03oA2gIR0Cqzvx5cC5mdX2UKGgGR0CQ7jW5Yoy9aAdN6ANoCEdAqs/N1GLDRHV9lChoBkdAiGTjGT9sJ2gHTegDaAhHQKrVpOLR8dB1fZQoaAZHQIQMD9If8uVoB03oA2gIR0Cq1qoBaLXMdX2UKGgGR0CNehXfZVXFaAdN6ANoCEdAqtsAXbdrPHV9lChoBkdAhDTgqmTC+GgHTegDaAhHQKrb1zND+it1fZQoaAZHQIx8odyT6i1oB03oA2gIR0Cq4dH6/IsAdX2UKGgGR0Bctpzo2XLNaAdN6ANoCEdAquLVtQ9A5nV9lChoBkdAjbP181Gb1GgHTegDaAhHQKrnMPbwjMV1fZQoaAZHQGn9riVB2OhoB03oA2gIR0Cq6AhWPtD2dX2UKGgGR0B5fl8Rcu8LaAdN6ANoCEdAqu3nSBshxHV9lChoBkdAiFFEgntv42gHTegDaAhHQKru5dRiw0R1fZQoaAZHQIY7Xn6l+E1oB03oA2gIR0Cq8z/qPfbcdX2UKGgGR0CGmrSQYDT0aAdN6ANoCEdAqvQPYpUgjnV9lChoBkdAhdQZN47ihmgHTegDaAhHQKr52BAfMfR1fZQoaAZHQIxAyimEXchoB03oA2gIR0Cq+uAw482adX2UKGgGR0CQa0CZnctYaAdN6ANoCEdAqv9BiG34K3V9lChoBkdAj6/Bn8Koh2gHTegDaAhHQKsAFcbiqAB1fZQoaAZHQImzP62v0RRoB03oA2gIR0CrBfHr6ciGdX2UKGgGR0COxbXumaYvaAdN6ANoCEdAqwb9fu1F6XV9lChoBkdAkcInYtg8bWgHTegDaAhHQKsLWMDwH7h1fZQoaAZHQHy8x5xBE8doB03oA2gIR0CrDCkHlfZ3dX2UKGgGR0CQsf8UVSGbaAdN6ANoCEdAqxIeBczIm3V9lChoBkdAVwiL61stTWgHTegDaAhHQKsTI/336AR1fZQoaAZHQI43tjI7vG9oB03oA2gIR0CrF4WTHKfWdX2UKGgGR0CKlDronrpraAdN6ANoCEdAqxhaZrpJPXV9lChoBkdAZ2fd5Y5ksmgHTegDaAhHQKseVSqlxfh1fZQoaAZHQINGdrEcbR5oB03oA2gIR0CrH19rXUYsdX2UKGgGR0CFwcUHpr1vaAdN6ANoCEdAqyO9svZh8nV9lChoBkdAeaLS/0ulGmgHTegDaAhHQKskjLt/nW91fZQoaAZHQIgvlalk6LhoB03oA2gIR0CrKlItUXHjdX2UKGgGR0B4jXQHAymAaAdN6ANoCEdAqytWfh/AkHV9lChoBkdAfBs6By0a62gHTegDaAhHQKsvvfoA4n51fZQoaAZHQI4kwqXnhbZoB03oA2gIR0CrMIwzLwF1dX2UKGgGR0B40nl1bJOnaAdN6ANoCEdAqzhNvybx3HV9lChoBkdAlHDsEvCdjGgHTegDaAhHQKs53zcynDR1fZQoaAZHQH5IYNVinYRoB03oA2gIR0CrPqKagElmdX2UKGgGR0B0CQMF2V3VaAdN6ANoCEdAqz9xgCwKSnV9lChoBkdAjPAGXXyy2WgHTegDaAhHQKtFW0u14Ph1fZQoaAZHQJPR7Z/Tb35oB03oA2gIR0CrRmF3Qla9dX2UKGgGR0CKpm+RHPNWaAdN6ANoCEdAq0q316E8JXV9lChoBkdAXZVPk7wKB2gHTegDaAhHQKtLhvBJqZd1fZQoaAZHQJMt5m16Vt5oB03oA2gIR0CrUV1qN6w/dX2UKGgGR0CREvP3SKFaaAdN6ANoCEdAq1JeW4Vh1HV9lChoBkdAkzPHhfjS5WgHTegDaAhHQKtWrPt2LYR1fZQoaAZHQI++7YkE9uBoB03oA2gIR0CrV3ku6ErYdX2UKGgGR0CRIyQv6CUYaAdN6ANoCEdAq11/iaRZEHV9lChoBkdAjVxPq9oN/mgHTegDaAhHQKtehJ17pmp1fZQoaAZHQI/R+EEkjX5oB03oA2gIR0CrYuIdlum8dX2UKGgGR0CRu+Z+hGpdaAdN6ANoCEdAq2Ot41P3z3V9lChoBkdAi8Z9L6DXe2gHTegDaAhHQKtpk9tdiUh1fZQoaAZHQI0kjdP+GXZoB03oA2gIR0Crapvh60IDdX2UKGgGR0CI/UXGff4zaAdN6ANoCEdAq27i3Zwn6XV9lChoBkdAiN1Qqqfe12gHTegDaAhHQKtvrLxqfvp1fZQoaAZHQI55PAsTWXloB03oA2gIR0CrdXmWt2cKdX2UKGgGR0CJdpUONHYpaAdN6ANoCEdAq3Z/6dlNDnV9lChoBkdAkqqFlTWGy2gHTegDaAhHQKt62yt3fQ91fZQoaAZHQI6uCGHpKSRoB03oA2gIR0Cre6h+nZTRdX2UKGgGR0B3HkagmJFcaAdN6ANoCEdAq4F80rK/23V9lChoBkdAi8Z80k4WDmgHTegDaAhHQKuCf63y7PJ1fZQoaAZHQI4CMgr6LwZoB03oA2gIR0CrhutNi6QOdX2UKGgGR0CMoJtl7MPjaAdN6ANoCEdAq4e7muDBdnV9lChoBkdAiumMc6vJR2gHTegDaAhHQKuNrfYSQHR1fZQoaAZHQJCuLR8c+7loB03oA2gIR0Crjq6hHskZdX2UKGgGR0CPUIQyRB/raAdN6ANoCEdAq5MORoysS3V9lChoBkdAi3z3wsoUjGgHTegDaAhHQKuT2q//Nqx1fZQoaAZHwDFxIMBp5/toB0vaaAhHQKuVpyZrpJR1fZQoaAZHQImzWom5UcZoB03oA2gIR0CrmcEhaC+UdX2UKGgGR0CNq7O5avA5aAdN6ANoCEdAq5rCYLLIP3V9lChoBkdAiwET8YQ8OmgHTegDaAhHQKuf8oG6f8N1fZQoaAZHQI6UudEsrd5oB03oA2gIR0CrocFnAZbZdX2UKGgGR0COpo0Q9RrKaAdN6ANoCEdAq6XMsBhhIHV9lChoBkdAj0wgC4jKPmgHTegDaAhHQKum0ZQYUFl1fZQoaAZHQHTEAAMlTm5oB03oA2gIR0CrrBZuAI6bdX2UKGgGR0BvWvK+zt1IaAdN6ANoCEdAq63nRRdhRnV9lChoBkdAjVeQNb1RL2gHTegDaAhHQKux53Qla8p1fZQoaAZHQIinOqcVgx9oB03oA2gIR0CrsuvNNahYdX2UKGgGR0CPoP7+kxh2aAdN6ANoCEdAq7gm5J9RaXV9lChoBkdAjU+ewkgOjWgHTegDaAhHQKu5+9HMEA51fZQoaAZHQITUayOaOPxoB03oA2gIR0CrvgRGMGX5dX2UKGgGR0CLRGf4AS39aAdN6ANoCEdAq78EUZeiSXV9lChoBkdAht9/KZDzAmgHTegDaAhHQKvEOxptaZB1fZQoaAZHQGEX8SGrS3NoB03oA2gIR0CrxhR0EHMVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9513109d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9513109dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9513109e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9513109ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f9513109f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f951310d040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f951310d0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f951310d160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f951310d1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f951310d280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f951310d310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f951310d3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9513103a80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674298720378132530, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFqacT8Bgsy+eTKdPoKz5T/w9wS9oFrKPmEdI78hCVm/1FZbvZBWCr4ppzQ/T/W+PlGE3b9+z56/VN4PPxM7ib57Phy/rmSGvykdm74GEfQ+xmy3v8Y6PTvV0wo/fOUkP/v08z5vFZ0+LXISP4Ylhb/zVKo/tRJbv4XxwL4Rudw/ow6av0UHZj8s/n2/jupAvvp6jj0KdQRALXFnvNMuZb4OKpW/C50CP7jEJz9S+m0/DeDJv2Ibljw1TJO/bQaUPnNPh79unFM/tnvRPYpJBD/79PM+I5pQwC1yEj+GJYW/We/1PhS6H78frzc96tMSP/3/Tb5CtUM/S4B3v0gcOT5VGr+/S58nPBfLK74aD5Y+gsxbvwM8Wr8t9yU/e8iyPJklnj+EhaW/t2vYv7dDmb5lMSg/SHrzv4HUAj+6KWK/+/TzPm8VnT4tchI/hiWFv9Jooj80gIg/0giEPzJ55j9q050+dqhEwJGiAr9fLoG957B9P+SZHcCD3DW/sqWJPnfY6b8CY/q9wru7PEyPY8CDuHm+Hb06QP5mQL9C3J28f7+6vXvlDkAJ7mk+ME9nPptRBsBvFZ0+PMHfv4Ylhb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADfypC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgVb0PQAAAACUxPW/AAAAAMPSOL0AAAAAgDgAQAAAAADm7Y69AAAAAILf9z8AAAAAckAzvQAAAABDfu6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVlN1tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFmJqD0AAAAA6YjgvwAAAAAmwKA9AAAAAIQ83T8AAAAAVEPRvQAAAADUgOo/AAAAAOIwUz0AAAAAlUsAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFDugzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDfHLG9AAAAAJVi9L8AAAAA75LVPAAAAACeru0/AAAAAPe5sj0AAAAAwPH3PwAAAAAgEfg8AAAAAP7z778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACeJS61AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAnpAXvAAAAABj5P6/AAAAAKJ6Db4AAAAAW6faPwAAAAB0aaI9AAAAAAyD9D8AAAAAoPVnvAAAAAA3Cu+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJa4yBreqJeMAWyUTegDjAF0lEdAroZ3HT7VKHV9lChoBkdAliUZ0GNaQmgHTegDaAhHQK6MZKB/Zuh1fZQoaAZHQJZf1s41gploB03oA2gIR0CujzLfUF0QdX2UKGgGR0CWvqVVxS5zaAdN6ANoCEdAro9//rB0p3V9lChoBkdAl1WFSwW30GgHTegDaAhHQK6WFb/wRXh1fZQoaAZHQJXA3rhR64VoB03oA2gIR0Cum/LLhaTwdX2UKGgGR0CTYOCtzS1FaAdN6ANoCEdArp616/qPfnV9lChoBkdAlNpBBmf5DmgHTegDaAhHQK6fArCFbml1fZQoaAZHQJW3n8CPp6hoB03oA2gIR0CupYWWIGhVdX2UKGgGR0CTZ2kuYhMbaAdN6ANoCEdArqtpnpSrHXV9lChoBkdAlJgI3rD632gHTegDaAhHQK6uQQKa5PN1fZQoaAZHQJWPvBuXNTtoB03oA2gIR0Curo+jM3ZPdX2UKGgGR0CUqKJZW7voaAdN6ANoCEdArrUVmOEM9nV9lChoBkdAlLjPUaya/mgHTegDaAhHQK67EZTAFgV1fZQoaAZHQJMl8wDeTFFoB03oA2gIR0CuveDOC5EudX2UKGgGR0CSapMpw0fpaAdN6ANoCEdArr4uy5Zr6HV9lChoBkdAkoUFnRLK3mgHTegDaAhHQK7Ewx7AtWd1fZQoaAZHQJDg6a8YhuBoB03oA2gIR0CuyrUiyIHkdX2UKGgGR0CS2uaPjn3daAdN6ANoCEdArs18xZdOZnV9lChoBkdAkh8nVG0/nmgHTegDaAhHQK7NzJVbRnh1fZQoaAZHQJKv3AoG6f9oB03oA2gIR0Cu1GWkzoECdX2UKGgGR0CRtQHE/B3zaAdN6ANoCEdArtpx/oaDPHV9lChoBkdAhZr7xd6cAmgHTegDaAhHQK7dS5HVf/p1fZQoaAZHQIdEBu89Oh1oB03oA2gIR0Cu3Zp1zQu3dX2UKGgGR0CRCUi3ocJdaAdN6ANoCEdAruUlFlTWG3V9lChoBkdAkG02Mn7YTWgHTegDaAhHQK7ureNT9891fZQoaAZHQI6nzKNhmXhoB03oA2gIR0Cu8X7yYoiLdX2UKGgGR0CQ0fCK77KraAdN6ANoCEdArvHQSteUp3V9lChoBkdAke9Ei+tbLWgHTegDaAhHQK74UxqO9391fZQoaAZHQI8vbqlgtvpoB03oA2gIR0Cu/kbbtZ3cdX2UKGgGR0CNndUjs2NvaAdN6ANoCEdArwES90zTF3V9lChoBkdAj0AECmuTzWgHTegDaAhHQK8BXkcS5Ah1fZQoaAZHQJDuEspXp4doB03oA2gIR0CvB+g75mAcdX2UKGgGR0CSn4pnYg7paAdN6ANoCEdArw3mJm/WUnV9lChoBkdAjwqBw++ueWgHTegDaAhHQK8QuD8Lrop1fZQoaAZHQJHoWShakh1oB03oA2gIR0CvEQRradtmdX2UKGgGR0CTMt82aUiZaAdN6ANoCEdArxeeyeI2wXV9lChoBkdAkdICsKb8WWgHTegDaAhHQK8dgz41xbV1fZQoaAZHQJA6lP0qYqpoB03oA2gIR0CvIDwd0aIfdX2UKGgGR0CRoNjkdV/+aAdN6ANoCEdAryCMXxe9jHV9lChoBkdAkDp59Vmz0GgHTegDaAhHQK8nGXxe9jB1fZQoaAZHQJJiWNIbwSdoB03oA2gIR0CvLQ1kDp1SdX2UKGgGR0CSOTrZrYXgaAdN6ANoCEdAry/m2y9mH3V9lChoBkdAkWyAu/UONGgHTegDaAhHQK8wNvYvnKZ1fZQoaAZHQIxbV+G47RxoB03oA2gIR0CvNtk5hjOLdX2UKGgGR0CN0vjcVQANaAdN6ANoCEdArzzpas6q83V9lChoBkdAjC1xY7q6fGgHTegDaAhHQK8/xBC2MKl1fZQoaAZHQI+uO4Cp3otoB03oA2gIR0CvQBRaX8fndX2UKGgGR0CQewNJe3QVaAdN6ANoCEdAr0bJh6SkkHV9lChoBkdAdhSmvW6K+GgHTegDaAhHQK9MxEsrd311fZQoaAZHQJHu4YJmdy1oB03oA2gIR0CvT4+CkGiYdX2UKGgGR0CRV/1G9YfXaAdN6ANoCEdAr0/eNWEK3XV9lChoBkdAjbEJIUahpWgHTegDaAhHQK9WcXoC+111fZQoaAZHQI9JrnDBMzxoB03oA2gIR0CvXFau4gA7dX2UKGgGR0CR1PgzP8htaAdN6ANoCEdAr18gT7EYO3V9lChoBkdAkaLwyqMm4WgHTegDaAhHQK9fbaX8fmt1fZQoaAZHQJGYjcbiqABoB03oA2gIR0CvZhz8gpz+dX2UKGgGR0CQjT0ZWJaaaAdN6ANoCEdAr2wgv+OwPnV9lChoBkdAiiC9DIBBA2gHTegDaAhHQK9vAvyLAHp1fZQoaAZHQHgVBYV6/qRoB03oA2gIR0Cvb1JXhfjTdX2UKGgGR0CJUmrn1WbPaAdN6ANoCEdAr3X2evpyInV9lChoBkdAiI5hS9/SY2gHTegDaAhHQK98D67dzn11fZQoaAZHQHk80iY9gWtoB03oA2gIR0CvfuxkmQbNdX2UKGgGR0CLha5XEIgOaAdN6ANoCEdAr39BGpda+3V9lChoBkdAj1e32/SH/WgHTegDaAhHQK+Fz/I8yN51fZQoaAZHQI8TBPykKu1oB03oA2gIR0Cvi8GKyfL+dX2UKGgGR0CJtxJbMX7+aAdN6ANoCEdAr46OIEbHZXV9lChoBkdAjB/s3yZrpWgHTegDaAhHQK+O20GeMAF1fZQoaAZHQIkyq+WWyC5oB03oA2gIR0CvlWTtTkyUdX2UKGgGR0CHrqD7IkquaAdN6ANoCEdAr5tPvhIe5nV9lChoBkdAip42SlnAZmgHTegDaAhHQK+eHb3XZoR1fZQoaAZHQIuHGjynUDxoB03oA2gIR0CvnmnTI/7jdX2UKGgGR0CJ6r1Tzd1uaAdN6ANoCEdAr6UCbtqpLnV9lChoBkdAitCHMdLg42gHTegDaAhHQK+q5LYf4h51fZQoaAZHQIvvfcvduYRoB03oA2gIR0CvrbJhnanKdX2UKGgGR0CQCl6VMVUNaAdN6ANoCEdAr63+p2ll9XV9lChoBkdAjzlfT9bX6WgHTegDaAhHQK+0hjNpudh1fZQoaAZHQJHDlHXmNipoB03oA2gIR0CvumFl9SdfdX2UKGgGR0CSMaKSxJNCaAdN6ANoCEdAr70nYcvM83V9lChoBkdAka4iYG+sYGgHTegDaAhHQK+9d47A+IN1fZQoaAZHQJGnVP69CeFoB03oA2gIR0Cvw/Io/iYLdX2UKGgGR0CSb0AGB4D+aAdN6ANoCEdAr8niISDh+HV9lChoBkdAkWTcFY+0PmgHTegDaAhHQK/MpsImgJ11fZQoaAZHQJAjIYGdI5JoB03oA2gIR0CvzPMlLOAzdX2UKGgGR0CQ1NNEw35vaAdN6ANoCEdAr9OKBoVVP3V9lChoBkdAkA2bmMfigmgHTegDaAhHQK/Zc3rD6311fZQoaAZHQJHrqfHxSYRoB03oA2gIR0Cv3DzPrv9cdX2UKGgGR0CSEAt3fQ8faAdN6ANoCEdAr9yLZDiOvXV9lChoBkdAkU/70J4SpWgHTegDaAhHQK/jJMhX8wZ1fZQoaAZHQJDE8pH7P6doB03oA2gIR0Cv6SAWzniedX2UKGgGR0CRmIM9KVY7aAdN6ANoCEdAr+zqAhB7eHV9lChoBkdAkf2tAood/GgHTegDaAhHQK/tZmCiAUd1fZQoaAZHQJMUpFVktmNoB03oA2gIR0Cv92TSsr/bdX2UKGgGR0CR4GsfaHsUaAdN6ANoCEdAr/1bebd8A3V9lChoBkdAkLB8cp9ZzWgHTegDaAhHQLAAERCx/ut1fZQoaAZHQJKWe8274BVoB03oA2gIR0CwADlCPZIydX2UKGgGR0CS4lQXyiEhaAdN6ANoCEdAsAN9A3T/hnV9lChoBkdAk4QIZQ53kmgHTegDaAhHQLAGdJxvNvB1fZQoaAZHQJQxDgvUSZloB03oA2gIR0CwB9rZi/fwdX2UKGgGR0CS4bfRu0kXaAdN6ANoCEdAsAgBId2gWnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1274.7438155601617, "std_reward": 73.91343543870524, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-21T12:09:23.809310"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2136
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c8fc9381b3c36ba1db7556b23349e86f8af306040db38ce8bb584e075d8717c
|
3 |
size 2136
|