Add model card
Browse files
README.md
CHANGED
@@ -1,3 +1,96 @@
|
|
1 |
-
---
|
2 |
-
license:
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: DotsOCR
|
4 |
+
tags:
|
5 |
+
- vision
|
6 |
+
- ocr
|
7 |
+
- document-understanding
|
8 |
+
- text-extraction
|
9 |
+
datasets:
|
10 |
+
- custom
|
11 |
+
language:
|
12 |
+
- en
|
13 |
+
pipeline_tag: image-to-text
|
14 |
+
---
|
15 |
+
|
16 |
+
# dots_table
|
17 |
+
|
18 |
+
This is a fine-tuned version of DotsOCR, optimized for document OCR tasks.
|
19 |
+
|
20 |
+
## Model Details
|
21 |
+
|
22 |
+
- **Base Model**: DotsOCR (1.7B parameters)
|
23 |
+
- **Training**: LoRA fine-tuning with rank 48
|
24 |
+
- **Task**: Document text extraction and OCR
|
25 |
+
- **Input**: Document images
|
26 |
+
- **Output**: Extracted text in structured format
|
27 |
+
|
28 |
+
## Usage
|
29 |
+
|
30 |
+
```python
|
31 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
32 |
+
import torch
|
33 |
+
from PIL import Image
|
34 |
+
|
35 |
+
# Load model and processor
|
36 |
+
model = AutoModelForCausalLM.from_pretrained(
|
37 |
+
"NirajRajai/dots_table",
|
38 |
+
torch_dtype=torch.bfloat16,
|
39 |
+
device_map="auto",
|
40 |
+
trust_remote_code=True,
|
41 |
+
attn_implementation="flash_attention_2"
|
42 |
+
)
|
43 |
+
processor = AutoProcessor.from_pretrained(
|
44 |
+
"NirajRajai/dots_table",
|
45 |
+
trust_remote_code=True
|
46 |
+
)
|
47 |
+
|
48 |
+
# Process image
|
49 |
+
image = Image.open("document.png")
|
50 |
+
messages = [
|
51 |
+
{
|
52 |
+
"role": "user",
|
53 |
+
"content": [
|
54 |
+
{"type": "image", "image": image},
|
55 |
+
{"type": "text", "text": "Extract the text content from this image."}
|
56 |
+
]
|
57 |
+
}
|
58 |
+
]
|
59 |
+
|
60 |
+
# Generate text
|
61 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
62 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
63 |
+
inputs = processor(
|
64 |
+
text=[text],
|
65 |
+
images=image_inputs,
|
66 |
+
videos=video_inputs,
|
67 |
+
padding=True,
|
68 |
+
return_tensors="pt"
|
69 |
+
).to(model.device)
|
70 |
+
|
71 |
+
generated_ids = model.generate(**inputs, max_new_tokens=2048)
|
72 |
+
generated_ids_trimmed = [
|
73 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
74 |
+
]
|
75 |
+
output_text = processor.batch_decode(
|
76 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
77 |
+
)[0]
|
78 |
+
|
79 |
+
print(output_text)
|
80 |
+
```
|
81 |
+
|
82 |
+
## Training Details
|
83 |
+
|
84 |
+
- **Hardware**: NVIDIA H100 80GB
|
85 |
+
- **Training Duration**: 3 epochs
|
86 |
+
- **Batch Size**: 2 (with gradient accumulation)
|
87 |
+
- **Learning Rate**: 5e-5
|
88 |
+
- **Optimizer**: AdamW 8-bit
|
89 |
+
|
90 |
+
## License
|
91 |
+
|
92 |
+
Apache 2.0
|
93 |
+
|
94 |
+
## Citation
|
95 |
+
|
96 |
+
If you use this model, please cite the original DotsOCR paper and this fine-tuned version.
|