File size: 6,079 Bytes
3c8f058 bdff6f4 3c8f058 bdff6f4 3c8f058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
"""
Minimal GoogLeNet (Inception V1) in MLX, up to inception4e.
Loads weights from a torchvision-exported npz (see export_googlenet_npz.py).
"""
import mlx.core as mx
import mlx.nn as nn
import numpy as np
def _conv_bn(in_ch, out_ch, kernel_size, stride=1, padding=0):
return nn.Sequential(
nn.Conv2d(
in_ch,
out_ch,
kernel_size=kernel_size,
stride=stride,
padding=padding,
bias=False,
),
nn.BatchNorm(out_ch, eps=1e-3, momentum=0.1),
nn.ReLU(),
)
class Inception(nn.Module):
def __init__(self, in_ch, ch1, ch3r, ch3, ch5r, ch5, pool_proj):
super().__init__()
self.branch1 = _conv_bn(in_ch, ch1, 1)
self.branch2_1 = _conv_bn(in_ch, ch3r, 1)
self.branch2_2 = _conv_bn(ch3r, ch3, 3, padding=1)
self.branch3_1 = _conv_bn(in_ch, ch5r, 1)
# The reference torchvision GoogLeNet uses a 3x3 conv here (not 5x5)
self.branch3_2 = _conv_bn(ch5r, ch5, 3, padding=1)
self.branch4_pool = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
self.branch4_2 = _conv_bn(in_ch, pool_proj, 1)
def __call__(self, x):
b1 = self.branch1(x)
b2 = self.branch2_2(self.branch2_1(x))
b3 = self.branch3_2(self.branch3_1(x))
b4 = self.branch4_2(self.branch4_pool(x))
return mx.concatenate([b1, b2, b3, b4], axis=-1)
class GoogLeNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = _conv_bn(3, 64, 7, stride=2, padding=3)
self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=0)
self.conv2 = _conv_bn(64, 64, 1)
self.conv3 = _conv_bn(64, 192, 3, padding=1)
self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=0)
self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
self.maxpool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=0)
self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
self.maxpool4 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)
def forward_with_endpoints(self, x):
endpoints = {}
x = self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.maxpool2(x)
x = self.inception3a(x)
endpoints["inception3a"] = x
x = self.inception3b(x)
endpoints["inception3b"] = x
x = self.maxpool3(x)
x = self.inception4a(x)
endpoints["inception4a"] = x
x = self.inception4b(x)
endpoints["inception4b"] = x
x = self.inception4c(x)
endpoints["inception4c"] = x
x = self.inception4d(x)
endpoints["inception4d"] = x
x = self.inception4e(x)
endpoints["inception4e"] = x
x = self.maxpool4(x)
x = self.inception5a(x)
endpoints["inception5a"] = x
x = self.inception5b(x)
endpoints["inception5b"] = x
return x, endpoints
def __call__(self, x):
_, endpoints = self.forward_with_endpoints(x)
return endpoints
def load_npz(self, path: str):
data = np.load(path)
def load_weight(key, target_module, param_name="weight", transpose=False):
# Check for standard float16/32 key
if key in data:
w = data[key]
# Check for int8 quantized key
elif f"{key}_int8" in data:
w_int8 = data[f"{key}_int8"]
scale = data[f"{key}_scale"]
# Dequantize
w = w_int8.astype(scale.dtype) * scale
else:
raise ValueError(f"Missing key {key} (or {key}_int8) in npz")
# Transpose for Conv2d weights if needed (PyTorch [O,I,H,W] -> MLX [O,H,W,I])
if transpose and w.ndim == 4:
w = np.transpose(w, (0, 2, 3, 1))
# Assign to module
target_module[param_name] = mx.array(w)
def load_conv_bn(prefix, seq_mod: nn.Sequential):
conv = seq_mod.layers[0]
bn = seq_mod.layers[1]
load_weight(f"{prefix}.conv.weight", conv, transpose=True)
load_weight(f"{prefix}.bn.weight", bn)
load_weight(f"{prefix}.bn.bias", bn, param_name="bias")
load_weight(f"{prefix}.bn.running_mean", bn, param_name="running_mean")
load_weight(f"{prefix}.bn.running_var", bn, param_name="running_var")
load_conv_bn("conv1", self.conv1)
load_conv_bn("conv2", self.conv2)
load_conv_bn("conv3", self.conv3)
def load_inception(prefix, module: Inception):
load_conv_bn(f"{prefix}.branch1", module.branch1)
load_conv_bn(f"{prefix}.branch2.0", module.branch2_1)
load_conv_bn(f"{prefix}.branch2.1", module.branch2_2)
load_conv_bn(f"{prefix}.branch3.0", module.branch3_1)
load_conv_bn(f"{prefix}.branch3.1", module.branch3_2)
load_conv_bn(f"{prefix}.branch4.1", module.branch4_2)
load_inception("inception3a", self.inception3a)
load_inception("inception3b", self.inception3b)
load_inception("inception4a", self.inception4a)
load_inception("inception4b", self.inception4b)
load_inception("inception4c", self.inception4c)
load_inception("inception4d", self.inception4d)
load_inception("inception4e", self.inception4e)
load_inception("inception5a", self.inception5a)
load_inception("inception5b", self.inception5b)
|