--- license: other license_name: adobe-license license_link: LICENSE datasets: - Major-TOM/Core-S2L2A - Major-TOM/Core-DEM ---

MESA: Text-Driven Terrain Generation Using Latent Diffusion and Global Copernicus Data

Paul Borne--Pons, Mikolaj Czerkawski,Rosalie Martin, Romain Rouffet

CVPR 2025 Workshop MORSE

MESA is a novel generative model based on latent denoising diffusion capable of generating 2.5D representations of terrain based on the text prompt conditioning supplied via natural language. The model produces two co-registered modalities of optical and depth maps. This model is a finetune of [stable-diffusion-2-1](https://huggingface.co/stabilityai/stable-diffusion-2-1) and is builds upon Hugging Face’s [Diffusers](https://github.com/huggingface/diffusers) library. ## Model Description - **Paper:** [MESA: Text-Driven Terrain Generation Using Latent Diffusion and Global Copernicus Data](https://arxiv.org/abs/2504.07210) - **Github:** - **Project page:** ## Installation ```sh # Clone the repository git clone https://github.com/PaulBorneP/MESA cd MESA # using python 3.11.12 pip install -r requirements.txt ``` ## Model Download ```sh mkdir weights huggingface-cli download NewtNewt/MESA --local-dir ./weights ``` ## Usage ```python from MESA.pipeline_terrain import TerrainDiffusionPipeline import torch pipe = TerrainDiffusionPipeline.from_pretrained("./weights", torch_dtype=torch.float16) pipe.to("cuda"); prompt = "A sentinel-2 image of montane forests and mountains in Mexico in August" image,dem = pipe(prompt, num_inference_steps=50, guidance_scale=7.5) ``` ## Citation ```latex @inproceedings{mesa2025, title={MESA: Text-Driven Terrain Generation Using Latent Diffusion and Global Copernicus Data}, author={Paul Borne--Pons and Mikolaj Czerkawski and Rosalie Martin and Romain Rouffet}, year={2025}, booktitle={MORSE Workshop at CVPR 2025}, eprint={2504.07210}, url={https://arxiv.org/abs/2504.07210},} ``` ## Acknowledgements This model is the product of a collaboration between [Φ-lab, European Space Agency (ESA)](https://philab.esa.int/) and the [Adobe Research (Paris, France)](https://research.adobe.com/careers/paris/).