Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- config.json +26 -0
- generation_config.json +7 -0
- latest +1 -0
- model-00001-of-00010.safetensors +3 -0
- model-00002-of-00010.safetensors +3 -0
- model-00003-of-00010.safetensors +3 -0
- model-00004-of-00010.safetensors +3 -0
- model-00005-of-00010.safetensors +3 -0
- model-00006-of-00010.safetensors +3 -0
- model-00007-of-00010.safetensors +3 -0
- model-00008-of-00010.safetensors +3 -0
- model-00009-of-00010.safetensors +3 -0
- model-00010-of-00010.safetensors +3 -0
- model.safetensors.index.json +370 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +1032 -0
- tokenizer.json +3 -0
- tokenizer_config.json +0 -0
- trainer_state.json +1898 -0
- training_args.bin +3 -0
- zero_to_fp32.py +674 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"MistralForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"head_dim": 128,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 5120,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 32768,
|
13 |
+
"max_position_embeddings": 131072,
|
14 |
+
"model_type": "mistral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 40,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"rms_norm_eps": 1e-05,
|
19 |
+
"rope_theta": 1000000000.0,
|
20 |
+
"sliding_window": null,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.51.3",
|
24 |
+
"use_cache": false,
|
25 |
+
"vocab_size": 131072
|
26 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"transformers_version": "4.51.3"
|
7 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step255
|
model-00001-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32433c65657ef5ea09a4f0974ec22ee1521961a293720125bcd7d5707aacdce2
|
3 |
+
size 4781571736
|
model-00002-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:360176f6f97a32856bb7634f393c0d65768ea699496c96b9fd5fa7b0ff622743
|
3 |
+
size 4781592784
|
model-00003-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:316252e89b322fac157cf360301955e298037aa931b2ef0440747f8dca6c54a3
|
3 |
+
size 4781592800
|
model-00004-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e6f9bf29fe4060e7fae78e60f7b7b419db8149a5b88d76685df80a45ab95cb9
|
3 |
+
size 4886471600
|
model-00005-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b89556a9fc6e80238aa9ca2631cdba80a29e49b7462d1596bc714c7773e70cf2
|
3 |
+
size 4781592824
|
model-00006-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c67e6390615f3fb3d8a30c1f9a0c8d2b38572735c07f85346166446f682f4907
|
3 |
+
size 4781592816
|
model-00007-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:515a86e0eb9037ee3a775fee9f736e1c17262fd4c336fb11e91ffdf71d0de437
|
3 |
+
size 4886471600
|
model-00008-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b3f3f40a754dd6687bd25b40dd47604b686409b87d5bfb6ccf667728d8bcf34
|
3 |
+
size 4781592824
|
model-00009-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81bb6549dfd807ad33bb6eaa8e75042df7b82ef36d3dbe8e88d1e50c45bd1c49
|
3 |
+
size 4781592816
|
model-00010-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae14fa2f6624c128142f2ca3f6f33aa683e7d38b4ad46845277dffe5a1593b77
|
3 |
+
size 3900777072
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 47144806400
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00010-of-00010.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00010.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00010.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00010.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00003-of-00010.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00004-of-00010.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00004-of-00010.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00004-of-00010.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00004-of-00010.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00004-of-00010.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00005-of-00010.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00005-of-00010.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00005-of-00010.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00005-of-00010.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00010.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00006-of-00010.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00006-of-00010.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00006-of-00010.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00006-of-00010.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00007-of-00010.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00007-of-00010.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00007-of-00010.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00007-of-00010.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00007-of-00010.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00008-of-00010.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00002-of-00010.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00008-of-00010.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00008-of-00010.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
|
242 |
+
"model.layers.32.input_layernorm.weight": "model-00008-of-00010.safetensors",
|
243 |
+
"model.layers.32.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
|
244 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
|
245 |
+
"model.layers.32.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
|
246 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
|
247 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
|
248 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
|
249 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
|
250 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
|
251 |
+
"model.layers.33.input_layernorm.weight": "model-00009-of-00010.safetensors",
|
252 |
+
"model.layers.33.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
|
253 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
|
254 |
+
"model.layers.33.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
|
255 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
|
256 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
|
257 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
|
258 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
|
259 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
|
260 |
+
"model.layers.34.input_layernorm.weight": "model-00009-of-00010.safetensors",
|
261 |
+
"model.layers.34.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
|
262 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
|
263 |
+
"model.layers.34.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
|
264 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
|
265 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
|
266 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
|
267 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
|
268 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
|
269 |
+
"model.layers.35.input_layernorm.weight": "model-00009-of-00010.safetensors",
|
270 |
+
"model.layers.35.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
|
271 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
|
272 |
+
"model.layers.35.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
|
273 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
|
274 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
|
275 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
|
276 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
|
277 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
|
278 |
+
"model.layers.36.input_layernorm.weight": "model-00009-of-00010.safetensors",
|
279 |
+
"model.layers.36.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
|
280 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
|
281 |
+
"model.layers.36.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
|
282 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
|
283 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
|
284 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
|
285 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
|
286 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
|
287 |
+
"model.layers.37.input_layernorm.weight": "model-00010-of-00010.safetensors",
|
288 |
+
"model.layers.37.mlp.down_proj.weight": "model-00010-of-00010.safetensors",
|
289 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
|
290 |
+
"model.layers.37.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
|
291 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
|
292 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
|
293 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
|
294 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
|
295 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
|
296 |
+
"model.layers.38.input_layernorm.weight": "model-00010-of-00010.safetensors",
|
297 |
+
"model.layers.38.mlp.down_proj.weight": "model-00010-of-00010.safetensors",
|
298 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00010-of-00010.safetensors",
|
299 |
+
"model.layers.38.mlp.up_proj.weight": "model-00010-of-00010.safetensors",
|
300 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
|
301 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00010-of-00010.safetensors",
|
302 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00010-of-00010.safetensors",
|
303 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00010-of-00010.safetensors",
|
304 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00010-of-00010.safetensors",
|
305 |
+
"model.layers.39.input_layernorm.weight": "model-00010-of-00010.safetensors",
|
306 |
+
"model.layers.39.mlp.down_proj.weight": "model-00010-of-00010.safetensors",
|
307 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00010-of-00010.safetensors",
|
308 |
+
"model.layers.39.mlp.up_proj.weight": "model-00010-of-00010.safetensors",
|
309 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
|
310 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00010-of-00010.safetensors",
|
311 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00010-of-00010.safetensors",
|
312 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00010-of-00010.safetensors",
|
313 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00010-of-00010.safetensors",
|
314 |
+
"model.layers.4.input_layernorm.weight": "model-00002-of-00010.safetensors",
|
315 |
+
"model.layers.4.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
|
316 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
|
317 |
+
"model.layers.4.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
|
318 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
|
319 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
|
320 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
|
321 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
|
322 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
|
323 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00010.safetensors",
|
324 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
|
325 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
|
326 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
|
327 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
|
328 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
|
329 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
|
330 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
|
331 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
|
332 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00010.safetensors",
|
333 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
|
334 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
|
335 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
|
336 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
|
337 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
|
338 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
|
339 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
|
340 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
|
341 |
+
"model.layers.7.input_layernorm.weight": "model-00003-of-00010.safetensors",
|
342 |
+
"model.layers.7.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
|
343 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
|
344 |
+
"model.layers.7.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
|
345 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
|
346 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
|
347 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
|
348 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
|
349 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
|
350 |
+
"model.layers.8.input_layernorm.weight": "model-00003-of-00010.safetensors",
|
351 |
+
"model.layers.8.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
|
352 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
|
353 |
+
"model.layers.8.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
|
354 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
|
355 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
|
356 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
|
357 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
|
358 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
|
359 |
+
"model.layers.9.input_layernorm.weight": "model-00003-of-00010.safetensors",
|
360 |
+
"model.layers.9.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
|
361 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
|
362 |
+
"model.layers.9.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
|
363 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
|
364 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
|
365 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
|
366 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
|
367 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
|
368 |
+
"model.norm.weight": "model-00010-of-00010.safetensors"
|
369 |
+
}
|
370 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b75930684c955ecf0c0d4663e934224dd9427dadc59769259f2549965d357d51
|
3 |
+
size 16389
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e0fc296e6f82fe9a1f2b1274ad316ee068039fb68d980e22ef7add272b3df2c
|
3 |
+
size 16389
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6399da60ecd02ef2a24796b1a0b8d7be3d9569d07a5cca1dae98bb711d07adc
|
3 |
+
size 16389
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e1f1975564e49e4b373c7185880a8efd678d42e7f4c9f4eb2ca3822853f4c41
|
3 |
+
size 16389
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f85c9d057fba0d1cd5d7ef8ef2d2c0bcab17f8bcefd896e1954ae652e7ea9742
|
3 |
+
size 16389
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fae7634eccbdfd7191d6e3316d715529147ef6845a5db00336d6d8894115f6b9
|
3 |
+
size 16389
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc671e9ecff8caa15e423e1d0ff23ea3b53712f483676c07e0841767cc8899f5
|
3 |
+
size 16389
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89ae733cbfe3211b283a70ccd5dc72b6a7638e14344d7116a42b9efff9d6c977
|
3 |
+
size 16389
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3bf2153a5f048b14eb14b950e980eca144ab12899ee02a89a2faa101ffd127b
|
3 |
+
size 1465
|
special_tokens_map.json
ADDED
@@ -0,0 +1,1032 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<unk>",
|
4 |
+
"<s>",
|
5 |
+
"</s>",
|
6 |
+
"[INST]",
|
7 |
+
"[/INST]",
|
8 |
+
"[AVAILABLE_TOOLS]",
|
9 |
+
"[/AVAILABLE_TOOLS]",
|
10 |
+
"[TOOL_RESULTS]",
|
11 |
+
"[/TOOL_RESULTS]",
|
12 |
+
"[TOOL_CALLS]",
|
13 |
+
"[IMG]",
|
14 |
+
"<pad>",
|
15 |
+
"[IMG_BREAK]",
|
16 |
+
"[IMG_END]",
|
17 |
+
"[PREFIX]",
|
18 |
+
"[MIDDLE]",
|
19 |
+
"[SUFFIX]",
|
20 |
+
"[SYSTEM_PROMPT]",
|
21 |
+
"[/SYSTEM_PROMPT]",
|
22 |
+
"[TOOL_CONTENT]",
|
23 |
+
"<SPECIAL_20>",
|
24 |
+
"<SPECIAL_21>",
|
25 |
+
"<SPECIAL_22>",
|
26 |
+
"<SPECIAL_23>",
|
27 |
+
"<SPECIAL_24>",
|
28 |
+
"<SPECIAL_25>",
|
29 |
+
"<SPECIAL_26>",
|
30 |
+
"<SPECIAL_27>",
|
31 |
+
"<SPECIAL_28>",
|
32 |
+
"<SPECIAL_29>",
|
33 |
+
"<SPECIAL_30>",
|
34 |
+
"<SPECIAL_31>",
|
35 |
+
"<SPECIAL_32>",
|
36 |
+
"<SPECIAL_33>",
|
37 |
+
"<SPECIAL_34>",
|
38 |
+
"<SPECIAL_35>",
|
39 |
+
"<SPECIAL_36>",
|
40 |
+
"<SPECIAL_37>",
|
41 |
+
"<SPECIAL_38>",
|
42 |
+
"<SPECIAL_39>",
|
43 |
+
"<SPECIAL_40>",
|
44 |
+
"<SPECIAL_41>",
|
45 |
+
"<SPECIAL_42>",
|
46 |
+
"<SPECIAL_43>",
|
47 |
+
"<SPECIAL_44>",
|
48 |
+
"<SPECIAL_45>",
|
49 |
+
"<SPECIAL_46>",
|
50 |
+
"<SPECIAL_47>",
|
51 |
+
"<SPECIAL_48>",
|
52 |
+
"<SPECIAL_49>",
|
53 |
+
"<SPECIAL_50>",
|
54 |
+
"<SPECIAL_51>",
|
55 |
+
"<SPECIAL_52>",
|
56 |
+
"<SPECIAL_53>",
|
57 |
+
"<SPECIAL_54>",
|
58 |
+
"<SPECIAL_55>",
|
59 |
+
"<SPECIAL_56>",
|
60 |
+
"<SPECIAL_57>",
|
61 |
+
"<SPECIAL_58>",
|
62 |
+
"<SPECIAL_59>",
|
63 |
+
"<SPECIAL_60>",
|
64 |
+
"<SPECIAL_61>",
|
65 |
+
"<SPECIAL_62>",
|
66 |
+
"<SPECIAL_63>",
|
67 |
+
"<SPECIAL_64>",
|
68 |
+
"<SPECIAL_65>",
|
69 |
+
"<SPECIAL_66>",
|
70 |
+
"<SPECIAL_67>",
|
71 |
+
"<SPECIAL_68>",
|
72 |
+
"<SPECIAL_69>",
|
73 |
+
"<SPECIAL_70>",
|
74 |
+
"<SPECIAL_71>",
|
75 |
+
"<SPECIAL_72>",
|
76 |
+
"<SPECIAL_73>",
|
77 |
+
"<SPECIAL_74>",
|
78 |
+
"<SPECIAL_75>",
|
79 |
+
"<SPECIAL_76>",
|
80 |
+
"<SPECIAL_77>",
|
81 |
+
"<SPECIAL_78>",
|
82 |
+
"<SPECIAL_79>",
|
83 |
+
"<SPECIAL_80>",
|
84 |
+
"<SPECIAL_81>",
|
85 |
+
"<SPECIAL_82>",
|
86 |
+
"<SPECIAL_83>",
|
87 |
+
"<SPECIAL_84>",
|
88 |
+
"<SPECIAL_85>",
|
89 |
+
"<SPECIAL_86>",
|
90 |
+
"<SPECIAL_87>",
|
91 |
+
"<SPECIAL_88>",
|
92 |
+
"<SPECIAL_89>",
|
93 |
+
"<SPECIAL_90>",
|
94 |
+
"<SPECIAL_91>",
|
95 |
+
"<SPECIAL_92>",
|
96 |
+
"<SPECIAL_93>",
|
97 |
+
"<SPECIAL_94>",
|
98 |
+
"<SPECIAL_95>",
|
99 |
+
"<SPECIAL_96>",
|
100 |
+
"<SPECIAL_97>",
|
101 |
+
"<SPECIAL_98>",
|
102 |
+
"<SPECIAL_99>",
|
103 |
+
"<SPECIAL_100>",
|
104 |
+
"<SPECIAL_101>",
|
105 |
+
"<SPECIAL_102>",
|
106 |
+
"<SPECIAL_103>",
|
107 |
+
"<SPECIAL_104>",
|
108 |
+
"<SPECIAL_105>",
|
109 |
+
"<SPECIAL_106>",
|
110 |
+
"<SPECIAL_107>",
|
111 |
+
"<SPECIAL_108>",
|
112 |
+
"<SPECIAL_109>",
|
113 |
+
"<SPECIAL_110>",
|
114 |
+
"<SPECIAL_111>",
|
115 |
+
"<SPECIAL_112>",
|
116 |
+
"<SPECIAL_113>",
|
117 |
+
"<SPECIAL_114>",
|
118 |
+
"<SPECIAL_115>",
|
119 |
+
"<SPECIAL_116>",
|
120 |
+
"<SPECIAL_117>",
|
121 |
+
"<SPECIAL_118>",
|
122 |
+
"<SPECIAL_119>",
|
123 |
+
"<SPECIAL_120>",
|
124 |
+
"<SPECIAL_121>",
|
125 |
+
"<SPECIAL_122>",
|
126 |
+
"<SPECIAL_123>",
|
127 |
+
"<SPECIAL_124>",
|
128 |
+
"<SPECIAL_125>",
|
129 |
+
"<SPECIAL_126>",
|
130 |
+
"<SPECIAL_127>",
|
131 |
+
"<SPECIAL_128>",
|
132 |
+
"<SPECIAL_129>",
|
133 |
+
"<SPECIAL_130>",
|
134 |
+
"<SPECIAL_131>",
|
135 |
+
"<SPECIAL_132>",
|
136 |
+
"<SPECIAL_133>",
|
137 |
+
"<SPECIAL_134>",
|
138 |
+
"<SPECIAL_135>",
|
139 |
+
"<SPECIAL_136>",
|
140 |
+
"<SPECIAL_137>",
|
141 |
+
"<SPECIAL_138>",
|
142 |
+
"<SPECIAL_139>",
|
143 |
+
"<SPECIAL_140>",
|
144 |
+
"<SPECIAL_141>",
|
145 |
+
"<SPECIAL_142>",
|
146 |
+
"<SPECIAL_143>",
|
147 |
+
"<SPECIAL_144>",
|
148 |
+
"<SPECIAL_145>",
|
149 |
+
"<SPECIAL_146>",
|
150 |
+
"<SPECIAL_147>",
|
151 |
+
"<SPECIAL_148>",
|
152 |
+
"<SPECIAL_149>",
|
153 |
+
"<SPECIAL_150>",
|
154 |
+
"<SPECIAL_151>",
|
155 |
+
"<SPECIAL_152>",
|
156 |
+
"<SPECIAL_153>",
|
157 |
+
"<SPECIAL_154>",
|
158 |
+
"<SPECIAL_155>",
|
159 |
+
"<SPECIAL_156>",
|
160 |
+
"<SPECIAL_157>",
|
161 |
+
"<SPECIAL_158>",
|
162 |
+
"<SPECIAL_159>",
|
163 |
+
"<SPECIAL_160>",
|
164 |
+
"<SPECIAL_161>",
|
165 |
+
"<SPECIAL_162>",
|
166 |
+
"<SPECIAL_163>",
|
167 |
+
"<SPECIAL_164>",
|
168 |
+
"<SPECIAL_165>",
|
169 |
+
"<SPECIAL_166>",
|
170 |
+
"<SPECIAL_167>",
|
171 |
+
"<SPECIAL_168>",
|
172 |
+
"<SPECIAL_169>",
|
173 |
+
"<SPECIAL_170>",
|
174 |
+
"<SPECIAL_171>",
|
175 |
+
"<SPECIAL_172>",
|
176 |
+
"<SPECIAL_173>",
|
177 |
+
"<SPECIAL_174>",
|
178 |
+
"<SPECIAL_175>",
|
179 |
+
"<SPECIAL_176>",
|
180 |
+
"<SPECIAL_177>",
|
181 |
+
"<SPECIAL_178>",
|
182 |
+
"<SPECIAL_179>",
|
183 |
+
"<SPECIAL_180>",
|
184 |
+
"<SPECIAL_181>",
|
185 |
+
"<SPECIAL_182>",
|
186 |
+
"<SPECIAL_183>",
|
187 |
+
"<SPECIAL_184>",
|
188 |
+
"<SPECIAL_185>",
|
189 |
+
"<SPECIAL_186>",
|
190 |
+
"<SPECIAL_187>",
|
191 |
+
"<SPECIAL_188>",
|
192 |
+
"<SPECIAL_189>",
|
193 |
+
"<SPECIAL_190>",
|
194 |
+
"<SPECIAL_191>",
|
195 |
+
"<SPECIAL_192>",
|
196 |
+
"<SPECIAL_193>",
|
197 |
+
"<SPECIAL_194>",
|
198 |
+
"<SPECIAL_195>",
|
199 |
+
"<SPECIAL_196>",
|
200 |
+
"<SPECIAL_197>",
|
201 |
+
"<SPECIAL_198>",
|
202 |
+
"<SPECIAL_199>",
|
203 |
+
"<SPECIAL_200>",
|
204 |
+
"<SPECIAL_201>",
|
205 |
+
"<SPECIAL_202>",
|
206 |
+
"<SPECIAL_203>",
|
207 |
+
"<SPECIAL_204>",
|
208 |
+
"<SPECIAL_205>",
|
209 |
+
"<SPECIAL_206>",
|
210 |
+
"<SPECIAL_207>",
|
211 |
+
"<SPECIAL_208>",
|
212 |
+
"<SPECIAL_209>",
|
213 |
+
"<SPECIAL_210>",
|
214 |
+
"<SPECIAL_211>",
|
215 |
+
"<SPECIAL_212>",
|
216 |
+
"<SPECIAL_213>",
|
217 |
+
"<SPECIAL_214>",
|
218 |
+
"<SPECIAL_215>",
|
219 |
+
"<SPECIAL_216>",
|
220 |
+
"<SPECIAL_217>",
|
221 |
+
"<SPECIAL_218>",
|
222 |
+
"<SPECIAL_219>",
|
223 |
+
"<SPECIAL_220>",
|
224 |
+
"<SPECIAL_221>",
|
225 |
+
"<SPECIAL_222>",
|
226 |
+
"<SPECIAL_223>",
|
227 |
+
"<SPECIAL_224>",
|
228 |
+
"<SPECIAL_225>",
|
229 |
+
"<SPECIAL_226>",
|
230 |
+
"<SPECIAL_227>",
|
231 |
+
"<SPECIAL_228>",
|
232 |
+
"<SPECIAL_229>",
|
233 |
+
"<SPECIAL_230>",
|
234 |
+
"<SPECIAL_231>",
|
235 |
+
"<SPECIAL_232>",
|
236 |
+
"<SPECIAL_233>",
|
237 |
+
"<SPECIAL_234>",
|
238 |
+
"<SPECIAL_235>",
|
239 |
+
"<SPECIAL_236>",
|
240 |
+
"<SPECIAL_237>",
|
241 |
+
"<SPECIAL_238>",
|
242 |
+
"<SPECIAL_239>",
|
243 |
+
"<SPECIAL_240>",
|
244 |
+
"<SPECIAL_241>",
|
245 |
+
"<SPECIAL_242>",
|
246 |
+
"<SPECIAL_243>",
|
247 |
+
"<SPECIAL_244>",
|
248 |
+
"<SPECIAL_245>",
|
249 |
+
"<SPECIAL_246>",
|
250 |
+
"<SPECIAL_247>",
|
251 |
+
"<SPECIAL_248>",
|
252 |
+
"<SPECIAL_249>",
|
253 |
+
"<SPECIAL_250>",
|
254 |
+
"<SPECIAL_251>",
|
255 |
+
"<SPECIAL_252>",
|
256 |
+
"<SPECIAL_253>",
|
257 |
+
"<SPECIAL_254>",
|
258 |
+
"<SPECIAL_255>",
|
259 |
+
"<SPECIAL_256>",
|
260 |
+
"<SPECIAL_257>",
|
261 |
+
"<SPECIAL_258>",
|
262 |
+
"<SPECIAL_259>",
|
263 |
+
"<SPECIAL_260>",
|
264 |
+
"<SPECIAL_261>",
|
265 |
+
"<SPECIAL_262>",
|
266 |
+
"<SPECIAL_263>",
|
267 |
+
"<SPECIAL_264>",
|
268 |
+
"<SPECIAL_265>",
|
269 |
+
"<SPECIAL_266>",
|
270 |
+
"<SPECIAL_267>",
|
271 |
+
"<SPECIAL_268>",
|
272 |
+
"<SPECIAL_269>",
|
273 |
+
"<SPECIAL_270>",
|
274 |
+
"<SPECIAL_271>",
|
275 |
+
"<SPECIAL_272>",
|
276 |
+
"<SPECIAL_273>",
|
277 |
+
"<SPECIAL_274>",
|
278 |
+
"<SPECIAL_275>",
|
279 |
+
"<SPECIAL_276>",
|
280 |
+
"<SPECIAL_277>",
|
281 |
+
"<SPECIAL_278>",
|
282 |
+
"<SPECIAL_279>",
|
283 |
+
"<SPECIAL_280>",
|
284 |
+
"<SPECIAL_281>",
|
285 |
+
"<SPECIAL_282>",
|
286 |
+
"<SPECIAL_283>",
|
287 |
+
"<SPECIAL_284>",
|
288 |
+
"<SPECIAL_285>",
|
289 |
+
"<SPECIAL_286>",
|
290 |
+
"<SPECIAL_287>",
|
291 |
+
"<SPECIAL_288>",
|
292 |
+
"<SPECIAL_289>",
|
293 |
+
"<SPECIAL_290>",
|
294 |
+
"<SPECIAL_291>",
|
295 |
+
"<SPECIAL_292>",
|
296 |
+
"<SPECIAL_293>",
|
297 |
+
"<SPECIAL_294>",
|
298 |
+
"<SPECIAL_295>",
|
299 |
+
"<SPECIAL_296>",
|
300 |
+
"<SPECIAL_297>",
|
301 |
+
"<SPECIAL_298>",
|
302 |
+
"<SPECIAL_299>",
|
303 |
+
"<SPECIAL_300>",
|
304 |
+
"<SPECIAL_301>",
|
305 |
+
"<SPECIAL_302>",
|
306 |
+
"<SPECIAL_303>",
|
307 |
+
"<SPECIAL_304>",
|
308 |
+
"<SPECIAL_305>",
|
309 |
+
"<SPECIAL_306>",
|
310 |
+
"<SPECIAL_307>",
|
311 |
+
"<SPECIAL_308>",
|
312 |
+
"<SPECIAL_309>",
|
313 |
+
"<SPECIAL_310>",
|
314 |
+
"<SPECIAL_311>",
|
315 |
+
"<SPECIAL_312>",
|
316 |
+
"<SPECIAL_313>",
|
317 |
+
"<SPECIAL_314>",
|
318 |
+
"<SPECIAL_315>",
|
319 |
+
"<SPECIAL_316>",
|
320 |
+
"<SPECIAL_317>",
|
321 |
+
"<SPECIAL_318>",
|
322 |
+
"<SPECIAL_319>",
|
323 |
+
"<SPECIAL_320>",
|
324 |
+
"<SPECIAL_321>",
|
325 |
+
"<SPECIAL_322>",
|
326 |
+
"<SPECIAL_323>",
|
327 |
+
"<SPECIAL_324>",
|
328 |
+
"<SPECIAL_325>",
|
329 |
+
"<SPECIAL_326>",
|
330 |
+
"<SPECIAL_327>",
|
331 |
+
"<SPECIAL_328>",
|
332 |
+
"<SPECIAL_329>",
|
333 |
+
"<SPECIAL_330>",
|
334 |
+
"<SPECIAL_331>",
|
335 |
+
"<SPECIAL_332>",
|
336 |
+
"<SPECIAL_333>",
|
337 |
+
"<SPECIAL_334>",
|
338 |
+
"<SPECIAL_335>",
|
339 |
+
"<SPECIAL_336>",
|
340 |
+
"<SPECIAL_337>",
|
341 |
+
"<SPECIAL_338>",
|
342 |
+
"<SPECIAL_339>",
|
343 |
+
"<SPECIAL_340>",
|
344 |
+
"<SPECIAL_341>",
|
345 |
+
"<SPECIAL_342>",
|
346 |
+
"<SPECIAL_343>",
|
347 |
+
"<SPECIAL_344>",
|
348 |
+
"<SPECIAL_345>",
|
349 |
+
"<SPECIAL_346>",
|
350 |
+
"<SPECIAL_347>",
|
351 |
+
"<SPECIAL_348>",
|
352 |
+
"<SPECIAL_349>",
|
353 |
+
"<SPECIAL_350>",
|
354 |
+
"<SPECIAL_351>",
|
355 |
+
"<SPECIAL_352>",
|
356 |
+
"<SPECIAL_353>",
|
357 |
+
"<SPECIAL_354>",
|
358 |
+
"<SPECIAL_355>",
|
359 |
+
"<SPECIAL_356>",
|
360 |
+
"<SPECIAL_357>",
|
361 |
+
"<SPECIAL_358>",
|
362 |
+
"<SPECIAL_359>",
|
363 |
+
"<SPECIAL_360>",
|
364 |
+
"<SPECIAL_361>",
|
365 |
+
"<SPECIAL_362>",
|
366 |
+
"<SPECIAL_363>",
|
367 |
+
"<SPECIAL_364>",
|
368 |
+
"<SPECIAL_365>",
|
369 |
+
"<SPECIAL_366>",
|
370 |
+
"<SPECIAL_367>",
|
371 |
+
"<SPECIAL_368>",
|
372 |
+
"<SPECIAL_369>",
|
373 |
+
"<SPECIAL_370>",
|
374 |
+
"<SPECIAL_371>",
|
375 |
+
"<SPECIAL_372>",
|
376 |
+
"<SPECIAL_373>",
|
377 |
+
"<SPECIAL_374>",
|
378 |
+
"<SPECIAL_375>",
|
379 |
+
"<SPECIAL_376>",
|
380 |
+
"<SPECIAL_377>",
|
381 |
+
"<SPECIAL_378>",
|
382 |
+
"<SPECIAL_379>",
|
383 |
+
"<SPECIAL_380>",
|
384 |
+
"<SPECIAL_381>",
|
385 |
+
"<SPECIAL_382>",
|
386 |
+
"<SPECIAL_383>",
|
387 |
+
"<SPECIAL_384>",
|
388 |
+
"<SPECIAL_385>",
|
389 |
+
"<SPECIAL_386>",
|
390 |
+
"<SPECIAL_387>",
|
391 |
+
"<SPECIAL_388>",
|
392 |
+
"<SPECIAL_389>",
|
393 |
+
"<SPECIAL_390>",
|
394 |
+
"<SPECIAL_391>",
|
395 |
+
"<SPECIAL_392>",
|
396 |
+
"<SPECIAL_393>",
|
397 |
+
"<SPECIAL_394>",
|
398 |
+
"<SPECIAL_395>",
|
399 |
+
"<SPECIAL_396>",
|
400 |
+
"<SPECIAL_397>",
|
401 |
+
"<SPECIAL_398>",
|
402 |
+
"<SPECIAL_399>",
|
403 |
+
"<SPECIAL_400>",
|
404 |
+
"<SPECIAL_401>",
|
405 |
+
"<SPECIAL_402>",
|
406 |
+
"<SPECIAL_403>",
|
407 |
+
"<SPECIAL_404>",
|
408 |
+
"<SPECIAL_405>",
|
409 |
+
"<SPECIAL_406>",
|
410 |
+
"<SPECIAL_407>",
|
411 |
+
"<SPECIAL_408>",
|
412 |
+
"<SPECIAL_409>",
|
413 |
+
"<SPECIAL_410>",
|
414 |
+
"<SPECIAL_411>",
|
415 |
+
"<SPECIAL_412>",
|
416 |
+
"<SPECIAL_413>",
|
417 |
+
"<SPECIAL_414>",
|
418 |
+
"<SPECIAL_415>",
|
419 |
+
"<SPECIAL_416>",
|
420 |
+
"<SPECIAL_417>",
|
421 |
+
"<SPECIAL_418>",
|
422 |
+
"<SPECIAL_419>",
|
423 |
+
"<SPECIAL_420>",
|
424 |
+
"<SPECIAL_421>",
|
425 |
+
"<SPECIAL_422>",
|
426 |
+
"<SPECIAL_423>",
|
427 |
+
"<SPECIAL_424>",
|
428 |
+
"<SPECIAL_425>",
|
429 |
+
"<SPECIAL_426>",
|
430 |
+
"<SPECIAL_427>",
|
431 |
+
"<SPECIAL_428>",
|
432 |
+
"<SPECIAL_429>",
|
433 |
+
"<SPECIAL_430>",
|
434 |
+
"<SPECIAL_431>",
|
435 |
+
"<SPECIAL_432>",
|
436 |
+
"<SPECIAL_433>",
|
437 |
+
"<SPECIAL_434>",
|
438 |
+
"<SPECIAL_435>",
|
439 |
+
"<SPECIAL_436>",
|
440 |
+
"<SPECIAL_437>",
|
441 |
+
"<SPECIAL_438>",
|
442 |
+
"<SPECIAL_439>",
|
443 |
+
"<SPECIAL_440>",
|
444 |
+
"<SPECIAL_441>",
|
445 |
+
"<SPECIAL_442>",
|
446 |
+
"<SPECIAL_443>",
|
447 |
+
"<SPECIAL_444>",
|
448 |
+
"<SPECIAL_445>",
|
449 |
+
"<SPECIAL_446>",
|
450 |
+
"<SPECIAL_447>",
|
451 |
+
"<SPECIAL_448>",
|
452 |
+
"<SPECIAL_449>",
|
453 |
+
"<SPECIAL_450>",
|
454 |
+
"<SPECIAL_451>",
|
455 |
+
"<SPECIAL_452>",
|
456 |
+
"<SPECIAL_453>",
|
457 |
+
"<SPECIAL_454>",
|
458 |
+
"<SPECIAL_455>",
|
459 |
+
"<SPECIAL_456>",
|
460 |
+
"<SPECIAL_457>",
|
461 |
+
"<SPECIAL_458>",
|
462 |
+
"<SPECIAL_459>",
|
463 |
+
"<SPECIAL_460>",
|
464 |
+
"<SPECIAL_461>",
|
465 |
+
"<SPECIAL_462>",
|
466 |
+
"<SPECIAL_463>",
|
467 |
+
"<SPECIAL_464>",
|
468 |
+
"<SPECIAL_465>",
|
469 |
+
"<SPECIAL_466>",
|
470 |
+
"<SPECIAL_467>",
|
471 |
+
"<SPECIAL_468>",
|
472 |
+
"<SPECIAL_469>",
|
473 |
+
"<SPECIAL_470>",
|
474 |
+
"<SPECIAL_471>",
|
475 |
+
"<SPECIAL_472>",
|
476 |
+
"<SPECIAL_473>",
|
477 |
+
"<SPECIAL_474>",
|
478 |
+
"<SPECIAL_475>",
|
479 |
+
"<SPECIAL_476>",
|
480 |
+
"<SPECIAL_477>",
|
481 |
+
"<SPECIAL_478>",
|
482 |
+
"<SPECIAL_479>",
|
483 |
+
"<SPECIAL_480>",
|
484 |
+
"<SPECIAL_481>",
|
485 |
+
"<SPECIAL_482>",
|
486 |
+
"<SPECIAL_483>",
|
487 |
+
"<SPECIAL_484>",
|
488 |
+
"<SPECIAL_485>",
|
489 |
+
"<SPECIAL_486>",
|
490 |
+
"<SPECIAL_487>",
|
491 |
+
"<SPECIAL_488>",
|
492 |
+
"<SPECIAL_489>",
|
493 |
+
"<SPECIAL_490>",
|
494 |
+
"<SPECIAL_491>",
|
495 |
+
"<SPECIAL_492>",
|
496 |
+
"<SPECIAL_493>",
|
497 |
+
"<SPECIAL_494>",
|
498 |
+
"<SPECIAL_495>",
|
499 |
+
"<SPECIAL_496>",
|
500 |
+
"<SPECIAL_497>",
|
501 |
+
"<SPECIAL_498>",
|
502 |
+
"<SPECIAL_499>",
|
503 |
+
"<SPECIAL_500>",
|
504 |
+
"<SPECIAL_501>",
|
505 |
+
"<SPECIAL_502>",
|
506 |
+
"<SPECIAL_503>",
|
507 |
+
"<SPECIAL_504>",
|
508 |
+
"<SPECIAL_505>",
|
509 |
+
"<SPECIAL_506>",
|
510 |
+
"<SPECIAL_507>",
|
511 |
+
"<SPECIAL_508>",
|
512 |
+
"<SPECIAL_509>",
|
513 |
+
"<SPECIAL_510>",
|
514 |
+
"<SPECIAL_511>",
|
515 |
+
"<SPECIAL_512>",
|
516 |
+
"<SPECIAL_513>",
|
517 |
+
"<SPECIAL_514>",
|
518 |
+
"<SPECIAL_515>",
|
519 |
+
"<SPECIAL_516>",
|
520 |
+
"<SPECIAL_517>",
|
521 |
+
"<SPECIAL_518>",
|
522 |
+
"<SPECIAL_519>",
|
523 |
+
"<SPECIAL_520>",
|
524 |
+
"<SPECIAL_521>",
|
525 |
+
"<SPECIAL_522>",
|
526 |
+
"<SPECIAL_523>",
|
527 |
+
"<SPECIAL_524>",
|
528 |
+
"<SPECIAL_525>",
|
529 |
+
"<SPECIAL_526>",
|
530 |
+
"<SPECIAL_527>",
|
531 |
+
"<SPECIAL_528>",
|
532 |
+
"<SPECIAL_529>",
|
533 |
+
"<SPECIAL_530>",
|
534 |
+
"<SPECIAL_531>",
|
535 |
+
"<SPECIAL_532>",
|
536 |
+
"<SPECIAL_533>",
|
537 |
+
"<SPECIAL_534>",
|
538 |
+
"<SPECIAL_535>",
|
539 |
+
"<SPECIAL_536>",
|
540 |
+
"<SPECIAL_537>",
|
541 |
+
"<SPECIAL_538>",
|
542 |
+
"<SPECIAL_539>",
|
543 |
+
"<SPECIAL_540>",
|
544 |
+
"<SPECIAL_541>",
|
545 |
+
"<SPECIAL_542>",
|
546 |
+
"<SPECIAL_543>",
|
547 |
+
"<SPECIAL_544>",
|
548 |
+
"<SPECIAL_545>",
|
549 |
+
"<SPECIAL_546>",
|
550 |
+
"<SPECIAL_547>",
|
551 |
+
"<SPECIAL_548>",
|
552 |
+
"<SPECIAL_549>",
|
553 |
+
"<SPECIAL_550>",
|
554 |
+
"<SPECIAL_551>",
|
555 |
+
"<SPECIAL_552>",
|
556 |
+
"<SPECIAL_553>",
|
557 |
+
"<SPECIAL_554>",
|
558 |
+
"<SPECIAL_555>",
|
559 |
+
"<SPECIAL_556>",
|
560 |
+
"<SPECIAL_557>",
|
561 |
+
"<SPECIAL_558>",
|
562 |
+
"<SPECIAL_559>",
|
563 |
+
"<SPECIAL_560>",
|
564 |
+
"<SPECIAL_561>",
|
565 |
+
"<SPECIAL_562>",
|
566 |
+
"<SPECIAL_563>",
|
567 |
+
"<SPECIAL_564>",
|
568 |
+
"<SPECIAL_565>",
|
569 |
+
"<SPECIAL_566>",
|
570 |
+
"<SPECIAL_567>",
|
571 |
+
"<SPECIAL_568>",
|
572 |
+
"<SPECIAL_569>",
|
573 |
+
"<SPECIAL_570>",
|
574 |
+
"<SPECIAL_571>",
|
575 |
+
"<SPECIAL_572>",
|
576 |
+
"<SPECIAL_573>",
|
577 |
+
"<SPECIAL_574>",
|
578 |
+
"<SPECIAL_575>",
|
579 |
+
"<SPECIAL_576>",
|
580 |
+
"<SPECIAL_577>",
|
581 |
+
"<SPECIAL_578>",
|
582 |
+
"<SPECIAL_579>",
|
583 |
+
"<SPECIAL_580>",
|
584 |
+
"<SPECIAL_581>",
|
585 |
+
"<SPECIAL_582>",
|
586 |
+
"<SPECIAL_583>",
|
587 |
+
"<SPECIAL_584>",
|
588 |
+
"<SPECIAL_585>",
|
589 |
+
"<SPECIAL_586>",
|
590 |
+
"<SPECIAL_587>",
|
591 |
+
"<SPECIAL_588>",
|
592 |
+
"<SPECIAL_589>",
|
593 |
+
"<SPECIAL_590>",
|
594 |
+
"<SPECIAL_591>",
|
595 |
+
"<SPECIAL_592>",
|
596 |
+
"<SPECIAL_593>",
|
597 |
+
"<SPECIAL_594>",
|
598 |
+
"<SPECIAL_595>",
|
599 |
+
"<SPECIAL_596>",
|
600 |
+
"<SPECIAL_597>",
|
601 |
+
"<SPECIAL_598>",
|
602 |
+
"<SPECIAL_599>",
|
603 |
+
"<SPECIAL_600>",
|
604 |
+
"<SPECIAL_601>",
|
605 |
+
"<SPECIAL_602>",
|
606 |
+
"<SPECIAL_603>",
|
607 |
+
"<SPECIAL_604>",
|
608 |
+
"<SPECIAL_605>",
|
609 |
+
"<SPECIAL_606>",
|
610 |
+
"<SPECIAL_607>",
|
611 |
+
"<SPECIAL_608>",
|
612 |
+
"<SPECIAL_609>",
|
613 |
+
"<SPECIAL_610>",
|
614 |
+
"<SPECIAL_611>",
|
615 |
+
"<SPECIAL_612>",
|
616 |
+
"<SPECIAL_613>",
|
617 |
+
"<SPECIAL_614>",
|
618 |
+
"<SPECIAL_615>",
|
619 |
+
"<SPECIAL_616>",
|
620 |
+
"<SPECIAL_617>",
|
621 |
+
"<SPECIAL_618>",
|
622 |
+
"<SPECIAL_619>",
|
623 |
+
"<SPECIAL_620>",
|
624 |
+
"<SPECIAL_621>",
|
625 |
+
"<SPECIAL_622>",
|
626 |
+
"<SPECIAL_623>",
|
627 |
+
"<SPECIAL_624>",
|
628 |
+
"<SPECIAL_625>",
|
629 |
+
"<SPECIAL_626>",
|
630 |
+
"<SPECIAL_627>",
|
631 |
+
"<SPECIAL_628>",
|
632 |
+
"<SPECIAL_629>",
|
633 |
+
"<SPECIAL_630>",
|
634 |
+
"<SPECIAL_631>",
|
635 |
+
"<SPECIAL_632>",
|
636 |
+
"<SPECIAL_633>",
|
637 |
+
"<SPECIAL_634>",
|
638 |
+
"<SPECIAL_635>",
|
639 |
+
"<SPECIAL_636>",
|
640 |
+
"<SPECIAL_637>",
|
641 |
+
"<SPECIAL_638>",
|
642 |
+
"<SPECIAL_639>",
|
643 |
+
"<SPECIAL_640>",
|
644 |
+
"<SPECIAL_641>",
|
645 |
+
"<SPECIAL_642>",
|
646 |
+
"<SPECIAL_643>",
|
647 |
+
"<SPECIAL_644>",
|
648 |
+
"<SPECIAL_645>",
|
649 |
+
"<SPECIAL_646>",
|
650 |
+
"<SPECIAL_647>",
|
651 |
+
"<SPECIAL_648>",
|
652 |
+
"<SPECIAL_649>",
|
653 |
+
"<SPECIAL_650>",
|
654 |
+
"<SPECIAL_651>",
|
655 |
+
"<SPECIAL_652>",
|
656 |
+
"<SPECIAL_653>",
|
657 |
+
"<SPECIAL_654>",
|
658 |
+
"<SPECIAL_655>",
|
659 |
+
"<SPECIAL_656>",
|
660 |
+
"<SPECIAL_657>",
|
661 |
+
"<SPECIAL_658>",
|
662 |
+
"<SPECIAL_659>",
|
663 |
+
"<SPECIAL_660>",
|
664 |
+
"<SPECIAL_661>",
|
665 |
+
"<SPECIAL_662>",
|
666 |
+
"<SPECIAL_663>",
|
667 |
+
"<SPECIAL_664>",
|
668 |
+
"<SPECIAL_665>",
|
669 |
+
"<SPECIAL_666>",
|
670 |
+
"<SPECIAL_667>",
|
671 |
+
"<SPECIAL_668>",
|
672 |
+
"<SPECIAL_669>",
|
673 |
+
"<SPECIAL_670>",
|
674 |
+
"<SPECIAL_671>",
|
675 |
+
"<SPECIAL_672>",
|
676 |
+
"<SPECIAL_673>",
|
677 |
+
"<SPECIAL_674>",
|
678 |
+
"<SPECIAL_675>",
|
679 |
+
"<SPECIAL_676>",
|
680 |
+
"<SPECIAL_677>",
|
681 |
+
"<SPECIAL_678>",
|
682 |
+
"<SPECIAL_679>",
|
683 |
+
"<SPECIAL_680>",
|
684 |
+
"<SPECIAL_681>",
|
685 |
+
"<SPECIAL_682>",
|
686 |
+
"<SPECIAL_683>",
|
687 |
+
"<SPECIAL_684>",
|
688 |
+
"<SPECIAL_685>",
|
689 |
+
"<SPECIAL_686>",
|
690 |
+
"<SPECIAL_687>",
|
691 |
+
"<SPECIAL_688>",
|
692 |
+
"<SPECIAL_689>",
|
693 |
+
"<SPECIAL_690>",
|
694 |
+
"<SPECIAL_691>",
|
695 |
+
"<SPECIAL_692>",
|
696 |
+
"<SPECIAL_693>",
|
697 |
+
"<SPECIAL_694>",
|
698 |
+
"<SPECIAL_695>",
|
699 |
+
"<SPECIAL_696>",
|
700 |
+
"<SPECIAL_697>",
|
701 |
+
"<SPECIAL_698>",
|
702 |
+
"<SPECIAL_699>",
|
703 |
+
"<SPECIAL_700>",
|
704 |
+
"<SPECIAL_701>",
|
705 |
+
"<SPECIAL_702>",
|
706 |
+
"<SPECIAL_703>",
|
707 |
+
"<SPECIAL_704>",
|
708 |
+
"<SPECIAL_705>",
|
709 |
+
"<SPECIAL_706>",
|
710 |
+
"<SPECIAL_707>",
|
711 |
+
"<SPECIAL_708>",
|
712 |
+
"<SPECIAL_709>",
|
713 |
+
"<SPECIAL_710>",
|
714 |
+
"<SPECIAL_711>",
|
715 |
+
"<SPECIAL_712>",
|
716 |
+
"<SPECIAL_713>",
|
717 |
+
"<SPECIAL_714>",
|
718 |
+
"<SPECIAL_715>",
|
719 |
+
"<SPECIAL_716>",
|
720 |
+
"<SPECIAL_717>",
|
721 |
+
"<SPECIAL_718>",
|
722 |
+
"<SPECIAL_719>",
|
723 |
+
"<SPECIAL_720>",
|
724 |
+
"<SPECIAL_721>",
|
725 |
+
"<SPECIAL_722>",
|
726 |
+
"<SPECIAL_723>",
|
727 |
+
"<SPECIAL_724>",
|
728 |
+
"<SPECIAL_725>",
|
729 |
+
"<SPECIAL_726>",
|
730 |
+
"<SPECIAL_727>",
|
731 |
+
"<SPECIAL_728>",
|
732 |
+
"<SPECIAL_729>",
|
733 |
+
"<SPECIAL_730>",
|
734 |
+
"<SPECIAL_731>",
|
735 |
+
"<SPECIAL_732>",
|
736 |
+
"<SPECIAL_733>",
|
737 |
+
"<SPECIAL_734>",
|
738 |
+
"<SPECIAL_735>",
|
739 |
+
"<SPECIAL_736>",
|
740 |
+
"<SPECIAL_737>",
|
741 |
+
"<SPECIAL_738>",
|
742 |
+
"<SPECIAL_739>",
|
743 |
+
"<SPECIAL_740>",
|
744 |
+
"<SPECIAL_741>",
|
745 |
+
"<SPECIAL_742>",
|
746 |
+
"<SPECIAL_743>",
|
747 |
+
"<SPECIAL_744>",
|
748 |
+
"<SPECIAL_745>",
|
749 |
+
"<SPECIAL_746>",
|
750 |
+
"<SPECIAL_747>",
|
751 |
+
"<SPECIAL_748>",
|
752 |
+
"<SPECIAL_749>",
|
753 |
+
"<SPECIAL_750>",
|
754 |
+
"<SPECIAL_751>",
|
755 |
+
"<SPECIAL_752>",
|
756 |
+
"<SPECIAL_753>",
|
757 |
+
"<SPECIAL_754>",
|
758 |
+
"<SPECIAL_755>",
|
759 |
+
"<SPECIAL_756>",
|
760 |
+
"<SPECIAL_757>",
|
761 |
+
"<SPECIAL_758>",
|
762 |
+
"<SPECIAL_759>",
|
763 |
+
"<SPECIAL_760>",
|
764 |
+
"<SPECIAL_761>",
|
765 |
+
"<SPECIAL_762>",
|
766 |
+
"<SPECIAL_763>",
|
767 |
+
"<SPECIAL_764>",
|
768 |
+
"<SPECIAL_765>",
|
769 |
+
"<SPECIAL_766>",
|
770 |
+
"<SPECIAL_767>",
|
771 |
+
"<SPECIAL_768>",
|
772 |
+
"<SPECIAL_769>",
|
773 |
+
"<SPECIAL_770>",
|
774 |
+
"<SPECIAL_771>",
|
775 |
+
"<SPECIAL_772>",
|
776 |
+
"<SPECIAL_773>",
|
777 |
+
"<SPECIAL_774>",
|
778 |
+
"<SPECIAL_775>",
|
779 |
+
"<SPECIAL_776>",
|
780 |
+
"<SPECIAL_777>",
|
781 |
+
"<SPECIAL_778>",
|
782 |
+
"<SPECIAL_779>",
|
783 |
+
"<SPECIAL_780>",
|
784 |
+
"<SPECIAL_781>",
|
785 |
+
"<SPECIAL_782>",
|
786 |
+
"<SPECIAL_783>",
|
787 |
+
"<SPECIAL_784>",
|
788 |
+
"<SPECIAL_785>",
|
789 |
+
"<SPECIAL_786>",
|
790 |
+
"<SPECIAL_787>",
|
791 |
+
"<SPECIAL_788>",
|
792 |
+
"<SPECIAL_789>",
|
793 |
+
"<SPECIAL_790>",
|
794 |
+
"<SPECIAL_791>",
|
795 |
+
"<SPECIAL_792>",
|
796 |
+
"<SPECIAL_793>",
|
797 |
+
"<SPECIAL_794>",
|
798 |
+
"<SPECIAL_795>",
|
799 |
+
"<SPECIAL_796>",
|
800 |
+
"<SPECIAL_797>",
|
801 |
+
"<SPECIAL_798>",
|
802 |
+
"<SPECIAL_799>",
|
803 |
+
"<SPECIAL_800>",
|
804 |
+
"<SPECIAL_801>",
|
805 |
+
"<SPECIAL_802>",
|
806 |
+
"<SPECIAL_803>",
|
807 |
+
"<SPECIAL_804>",
|
808 |
+
"<SPECIAL_805>",
|
809 |
+
"<SPECIAL_806>",
|
810 |
+
"<SPECIAL_807>",
|
811 |
+
"<SPECIAL_808>",
|
812 |
+
"<SPECIAL_809>",
|
813 |
+
"<SPECIAL_810>",
|
814 |
+
"<SPECIAL_811>",
|
815 |
+
"<SPECIAL_812>",
|
816 |
+
"<SPECIAL_813>",
|
817 |
+
"<SPECIAL_814>",
|
818 |
+
"<SPECIAL_815>",
|
819 |
+
"<SPECIAL_816>",
|
820 |
+
"<SPECIAL_817>",
|
821 |
+
"<SPECIAL_818>",
|
822 |
+
"<SPECIAL_819>",
|
823 |
+
"<SPECIAL_820>",
|
824 |
+
"<SPECIAL_821>",
|
825 |
+
"<SPECIAL_822>",
|
826 |
+
"<SPECIAL_823>",
|
827 |
+
"<SPECIAL_824>",
|
828 |
+
"<SPECIAL_825>",
|
829 |
+
"<SPECIAL_826>",
|
830 |
+
"<SPECIAL_827>",
|
831 |
+
"<SPECIAL_828>",
|
832 |
+
"<SPECIAL_829>",
|
833 |
+
"<SPECIAL_830>",
|
834 |
+
"<SPECIAL_831>",
|
835 |
+
"<SPECIAL_832>",
|
836 |
+
"<SPECIAL_833>",
|
837 |
+
"<SPECIAL_834>",
|
838 |
+
"<SPECIAL_835>",
|
839 |
+
"<SPECIAL_836>",
|
840 |
+
"<SPECIAL_837>",
|
841 |
+
"<SPECIAL_838>",
|
842 |
+
"<SPECIAL_839>",
|
843 |
+
"<SPECIAL_840>",
|
844 |
+
"<SPECIAL_841>",
|
845 |
+
"<SPECIAL_842>",
|
846 |
+
"<SPECIAL_843>",
|
847 |
+
"<SPECIAL_844>",
|
848 |
+
"<SPECIAL_845>",
|
849 |
+
"<SPECIAL_846>",
|
850 |
+
"<SPECIAL_847>",
|
851 |
+
"<SPECIAL_848>",
|
852 |
+
"<SPECIAL_849>",
|
853 |
+
"<SPECIAL_850>",
|
854 |
+
"<SPECIAL_851>",
|
855 |
+
"<SPECIAL_852>",
|
856 |
+
"<SPECIAL_853>",
|
857 |
+
"<SPECIAL_854>",
|
858 |
+
"<SPECIAL_855>",
|
859 |
+
"<SPECIAL_856>",
|
860 |
+
"<SPECIAL_857>",
|
861 |
+
"<SPECIAL_858>",
|
862 |
+
"<SPECIAL_859>",
|
863 |
+
"<SPECIAL_860>",
|
864 |
+
"<SPECIAL_861>",
|
865 |
+
"<SPECIAL_862>",
|
866 |
+
"<SPECIAL_863>",
|
867 |
+
"<SPECIAL_864>",
|
868 |
+
"<SPECIAL_865>",
|
869 |
+
"<SPECIAL_866>",
|
870 |
+
"<SPECIAL_867>",
|
871 |
+
"<SPECIAL_868>",
|
872 |
+
"<SPECIAL_869>",
|
873 |
+
"<SPECIAL_870>",
|
874 |
+
"<SPECIAL_871>",
|
875 |
+
"<SPECIAL_872>",
|
876 |
+
"<SPECIAL_873>",
|
877 |
+
"<SPECIAL_874>",
|
878 |
+
"<SPECIAL_875>",
|
879 |
+
"<SPECIAL_876>",
|
880 |
+
"<SPECIAL_877>",
|
881 |
+
"<SPECIAL_878>",
|
882 |
+
"<SPECIAL_879>",
|
883 |
+
"<SPECIAL_880>",
|
884 |
+
"<SPECIAL_881>",
|
885 |
+
"<SPECIAL_882>",
|
886 |
+
"<SPECIAL_883>",
|
887 |
+
"<SPECIAL_884>",
|
888 |
+
"<SPECIAL_885>",
|
889 |
+
"<SPECIAL_886>",
|
890 |
+
"<SPECIAL_887>",
|
891 |
+
"<SPECIAL_888>",
|
892 |
+
"<SPECIAL_889>",
|
893 |
+
"<SPECIAL_890>",
|
894 |
+
"<SPECIAL_891>",
|
895 |
+
"<SPECIAL_892>",
|
896 |
+
"<SPECIAL_893>",
|
897 |
+
"<SPECIAL_894>",
|
898 |
+
"<SPECIAL_895>",
|
899 |
+
"<SPECIAL_896>",
|
900 |
+
"<SPECIAL_897>",
|
901 |
+
"<SPECIAL_898>",
|
902 |
+
"<SPECIAL_899>",
|
903 |
+
"<SPECIAL_900>",
|
904 |
+
"<SPECIAL_901>",
|
905 |
+
"<SPECIAL_902>",
|
906 |
+
"<SPECIAL_903>",
|
907 |
+
"<SPECIAL_904>",
|
908 |
+
"<SPECIAL_905>",
|
909 |
+
"<SPECIAL_906>",
|
910 |
+
"<SPECIAL_907>",
|
911 |
+
"<SPECIAL_908>",
|
912 |
+
"<SPECIAL_909>",
|
913 |
+
"<SPECIAL_910>",
|
914 |
+
"<SPECIAL_911>",
|
915 |
+
"<SPECIAL_912>",
|
916 |
+
"<SPECIAL_913>",
|
917 |
+
"<SPECIAL_914>",
|
918 |
+
"<SPECIAL_915>",
|
919 |
+
"<SPECIAL_916>",
|
920 |
+
"<SPECIAL_917>",
|
921 |
+
"<SPECIAL_918>",
|
922 |
+
"<SPECIAL_919>",
|
923 |
+
"<SPECIAL_920>",
|
924 |
+
"<SPECIAL_921>",
|
925 |
+
"<SPECIAL_922>",
|
926 |
+
"<SPECIAL_923>",
|
927 |
+
"<SPECIAL_924>",
|
928 |
+
"<SPECIAL_925>",
|
929 |
+
"<SPECIAL_926>",
|
930 |
+
"<SPECIAL_927>",
|
931 |
+
"<SPECIAL_928>",
|
932 |
+
"<SPECIAL_929>",
|
933 |
+
"<SPECIAL_930>",
|
934 |
+
"<SPECIAL_931>",
|
935 |
+
"<SPECIAL_932>",
|
936 |
+
"<SPECIAL_933>",
|
937 |
+
"<SPECIAL_934>",
|
938 |
+
"<SPECIAL_935>",
|
939 |
+
"<SPECIAL_936>",
|
940 |
+
"<SPECIAL_937>",
|
941 |
+
"<SPECIAL_938>",
|
942 |
+
"<SPECIAL_939>",
|
943 |
+
"<SPECIAL_940>",
|
944 |
+
"<SPECIAL_941>",
|
945 |
+
"<SPECIAL_942>",
|
946 |
+
"<SPECIAL_943>",
|
947 |
+
"<SPECIAL_944>",
|
948 |
+
"<SPECIAL_945>",
|
949 |
+
"<SPECIAL_946>",
|
950 |
+
"<SPECIAL_947>",
|
951 |
+
"<SPECIAL_948>",
|
952 |
+
"<SPECIAL_949>",
|
953 |
+
"<SPECIAL_950>",
|
954 |
+
"<SPECIAL_951>",
|
955 |
+
"<SPECIAL_952>",
|
956 |
+
"<SPECIAL_953>",
|
957 |
+
"<SPECIAL_954>",
|
958 |
+
"<SPECIAL_955>",
|
959 |
+
"<SPECIAL_956>",
|
960 |
+
"<SPECIAL_957>",
|
961 |
+
"<SPECIAL_958>",
|
962 |
+
"<SPECIAL_959>",
|
963 |
+
"<SPECIAL_960>",
|
964 |
+
"<SPECIAL_961>",
|
965 |
+
"<SPECIAL_962>",
|
966 |
+
"<SPECIAL_963>",
|
967 |
+
"<SPECIAL_964>",
|
968 |
+
"<SPECIAL_965>",
|
969 |
+
"<SPECIAL_966>",
|
970 |
+
"<SPECIAL_967>",
|
971 |
+
"<SPECIAL_968>",
|
972 |
+
"<SPECIAL_969>",
|
973 |
+
"<SPECIAL_970>",
|
974 |
+
"<SPECIAL_971>",
|
975 |
+
"<SPECIAL_972>",
|
976 |
+
"<SPECIAL_973>",
|
977 |
+
"<SPECIAL_974>",
|
978 |
+
"<SPECIAL_975>",
|
979 |
+
"<SPECIAL_976>",
|
980 |
+
"<SPECIAL_977>",
|
981 |
+
"<SPECIAL_978>",
|
982 |
+
"<SPECIAL_979>",
|
983 |
+
"<SPECIAL_980>",
|
984 |
+
"<SPECIAL_981>",
|
985 |
+
"<SPECIAL_982>",
|
986 |
+
"<SPECIAL_983>",
|
987 |
+
"<SPECIAL_984>",
|
988 |
+
"<SPECIAL_985>",
|
989 |
+
"<SPECIAL_986>",
|
990 |
+
"<SPECIAL_987>",
|
991 |
+
"<SPECIAL_988>",
|
992 |
+
"<SPECIAL_989>",
|
993 |
+
"<SPECIAL_990>",
|
994 |
+
"<SPECIAL_991>",
|
995 |
+
"<SPECIAL_992>",
|
996 |
+
"<SPECIAL_993>",
|
997 |
+
"<SPECIAL_994>",
|
998 |
+
"<SPECIAL_995>",
|
999 |
+
"<SPECIAL_996>",
|
1000 |
+
"<SPECIAL_997>",
|
1001 |
+
"<SPECIAL_998>",
|
1002 |
+
"<SPECIAL_999>"
|
1003 |
+
],
|
1004 |
+
"bos_token": {
|
1005 |
+
"content": "<s>",
|
1006 |
+
"lstrip": false,
|
1007 |
+
"normalized": false,
|
1008 |
+
"rstrip": false,
|
1009 |
+
"single_word": false
|
1010 |
+
},
|
1011 |
+
"eos_token": {
|
1012 |
+
"content": "</s>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false
|
1017 |
+
},
|
1018 |
+
"pad_token": {
|
1019 |
+
"content": "<pad>",
|
1020 |
+
"lstrip": false,
|
1021 |
+
"normalized": false,
|
1022 |
+
"rstrip": false,
|
1023 |
+
"single_word": false
|
1024 |
+
},
|
1025 |
+
"unk_token": {
|
1026 |
+
"content": "<unk>",
|
1027 |
+
"lstrip": false,
|
1028 |
+
"normalized": false,
|
1029 |
+
"rstrip": false,
|
1030 |
+
"single_word": false
|
1031 |
+
}
|
1032 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b76085f9923309d873994d444989f7eb6ec074b06f25b58f1e8d7b7741070949
|
3 |
+
size 17078037
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
trainer_state.json
ADDED
@@ -0,0 +1,1898 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 1.9883268482490273,
|
6 |
+
"eval_steps": 32,
|
7 |
+
"global_step": 256,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.007782101167315175,
|
14 |
+
"grad_norm": 13.2358487482735,
|
15 |
+
"learning_rate": 4e-08,
|
16 |
+
"loss": 1.3028,
|
17 |
+
"step": 1
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.007782101167315175,
|
21 |
+
"eval_loss": 1.1581796407699585,
|
22 |
+
"eval_runtime": 193.4094,
|
23 |
+
"eval_samples_per_second": 13.939,
|
24 |
+
"eval_steps_per_second": 0.222,
|
25 |
+
"step": 1
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"epoch": 0.01556420233463035,
|
29 |
+
"grad_norm": 13.517130491540176,
|
30 |
+
"learning_rate": 8e-08,
|
31 |
+
"loss": 1.2437,
|
32 |
+
"step": 2
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.023346303501945526,
|
36 |
+
"grad_norm": 13.028970161750262,
|
37 |
+
"learning_rate": 1.2000000000000002e-07,
|
38 |
+
"loss": 1.3071,
|
39 |
+
"step": 3
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.0311284046692607,
|
43 |
+
"grad_norm": 13.538257754320586,
|
44 |
+
"learning_rate": 1.6e-07,
|
45 |
+
"loss": 1.3013,
|
46 |
+
"step": 4
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.038910505836575876,
|
50 |
+
"grad_norm": 13.666771312447045,
|
51 |
+
"learning_rate": 2e-07,
|
52 |
+
"loss": 1.2823,
|
53 |
+
"step": 5
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"epoch": 0.04669260700389105,
|
57 |
+
"grad_norm": 12.758203259942219,
|
58 |
+
"learning_rate": 2.4000000000000003e-07,
|
59 |
+
"loss": 1.2447,
|
60 |
+
"step": 6
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"epoch": 0.054474708171206226,
|
64 |
+
"grad_norm": 12.521308995567729,
|
65 |
+
"learning_rate": 2.8e-07,
|
66 |
+
"loss": 1.261,
|
67 |
+
"step": 7
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"epoch": 0.0622568093385214,
|
71 |
+
"grad_norm": 11.561801223157566,
|
72 |
+
"learning_rate": 3.2e-07,
|
73 |
+
"loss": 1.2665,
|
74 |
+
"step": 8
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.07003891050583658,
|
78 |
+
"grad_norm": 11.156739432208562,
|
79 |
+
"learning_rate": 3.6e-07,
|
80 |
+
"loss": 1.2488,
|
81 |
+
"step": 9
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.07782101167315175,
|
85 |
+
"grad_norm": 10.490731019339595,
|
86 |
+
"learning_rate": 4e-07,
|
87 |
+
"loss": 1.2695,
|
88 |
+
"step": 10
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"epoch": 0.08560311284046693,
|
92 |
+
"grad_norm": 8.664509193480505,
|
93 |
+
"learning_rate": 4.3999999999999997e-07,
|
94 |
+
"loss": 1.2306,
|
95 |
+
"step": 11
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"epoch": 0.0933852140077821,
|
99 |
+
"grad_norm": 7.187121902510894,
|
100 |
+
"learning_rate": 4.800000000000001e-07,
|
101 |
+
"loss": 1.2614,
|
102 |
+
"step": 12
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"epoch": 0.10116731517509728,
|
106 |
+
"grad_norm": 6.109576574934582,
|
107 |
+
"learning_rate": 5.2e-07,
|
108 |
+
"loss": 1.227,
|
109 |
+
"step": 13
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.10894941634241245,
|
113 |
+
"grad_norm": 5.033716100027243,
|
114 |
+
"learning_rate": 5.6e-07,
|
115 |
+
"loss": 1.2676,
|
116 |
+
"step": 14
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.11673151750972763,
|
120 |
+
"grad_norm": 3.4452961961682815,
|
121 |
+
"learning_rate": 6e-07,
|
122 |
+
"loss": 1.177,
|
123 |
+
"step": 15
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.1245136186770428,
|
127 |
+
"grad_norm": 3.1164741035862455,
|
128 |
+
"learning_rate": 6.4e-07,
|
129 |
+
"loss": 1.229,
|
130 |
+
"step": 16
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.13229571984435798,
|
134 |
+
"grad_norm": 3.1002564736005267,
|
135 |
+
"learning_rate": 6.8e-07,
|
136 |
+
"loss": 1.2488,
|
137 |
+
"step": 17
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.14007782101167315,
|
141 |
+
"grad_norm": 3.1257169665944833,
|
142 |
+
"learning_rate": 7.2e-07,
|
143 |
+
"loss": 1.2324,
|
144 |
+
"step": 18
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 0.14785992217898833,
|
148 |
+
"grad_norm": 3.0581482597501832,
|
149 |
+
"learning_rate": 7.599999999999999e-07,
|
150 |
+
"loss": 1.1873,
|
151 |
+
"step": 19
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 0.1556420233463035,
|
155 |
+
"grad_norm": 3.043731725003644,
|
156 |
+
"learning_rate": 8e-07,
|
157 |
+
"loss": 1.1759,
|
158 |
+
"step": 20
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.16342412451361868,
|
162 |
+
"grad_norm": 2.734793910693522,
|
163 |
+
"learning_rate": 8.4e-07,
|
164 |
+
"loss": 1.165,
|
165 |
+
"step": 21
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.17120622568093385,
|
169 |
+
"grad_norm": 2.5471637005098233,
|
170 |
+
"learning_rate": 8.799999999999999e-07,
|
171 |
+
"loss": 1.2258,
|
172 |
+
"step": 22
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"epoch": 0.17898832684824903,
|
176 |
+
"grad_norm": 2.133879636511503,
|
177 |
+
"learning_rate": 9.2e-07,
|
178 |
+
"loss": 1.1924,
|
179 |
+
"step": 23
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 0.1867704280155642,
|
183 |
+
"grad_norm": 1.809481995522435,
|
184 |
+
"learning_rate": 9.600000000000001e-07,
|
185 |
+
"loss": 1.1285,
|
186 |
+
"step": 24
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"epoch": 0.19455252918287938,
|
190 |
+
"grad_norm": 1.5258999116809353,
|
191 |
+
"learning_rate": 1e-06,
|
192 |
+
"loss": 1.1613,
|
193 |
+
"step": 25
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.20233463035019456,
|
197 |
+
"grad_norm": 1.363595982806325,
|
198 |
+
"learning_rate": 9.995654063450673e-07,
|
199 |
+
"loss": 1.1791,
|
200 |
+
"step": 26
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.21011673151750973,
|
204 |
+
"grad_norm": 1.4125313988908728,
|
205 |
+
"learning_rate": 9.9912739965096e-07,
|
206 |
+
"loss": 1.2031,
|
207 |
+
"step": 27
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.2178988326848249,
|
211 |
+
"grad_norm": 1.446135093305486,
|
212 |
+
"learning_rate": 9.986859395532194e-07,
|
213 |
+
"loss": 1.1514,
|
214 |
+
"step": 28
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 0.22568093385214008,
|
218 |
+
"grad_norm": 1.342713959761476,
|
219 |
+
"learning_rate": 9.98240985048373e-07,
|
220 |
+
"loss": 1.1741,
|
221 |
+
"step": 29
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.23346303501945526,
|
225 |
+
"grad_norm": 1.2716097075011323,
|
226 |
+
"learning_rate": 9.977924944812361e-07,
|
227 |
+
"loss": 1.1696,
|
228 |
+
"step": 30
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 0.24124513618677043,
|
232 |
+
"grad_norm": 1.1283654885451528,
|
233 |
+
"learning_rate": 9.973404255319148e-07,
|
234 |
+
"loss": 1.1564,
|
235 |
+
"step": 31
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"epoch": 0.2490272373540856,
|
239 |
+
"grad_norm": 1.0833672902427003,
|
240 |
+
"learning_rate": 9.968847352024923e-07,
|
241 |
+
"loss": 1.1924,
|
242 |
+
"step": 32
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.2490272373540856,
|
246 |
+
"eval_loss": 1.017075777053833,
|
247 |
+
"eval_runtime": 192.9829,
|
248 |
+
"eval_samples_per_second": 13.97,
|
249 |
+
"eval_steps_per_second": 0.223,
|
250 |
+
"step": 32
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"epoch": 0.25680933852140075,
|
254 |
+
"grad_norm": 1.1221714895781139,
|
255 |
+
"learning_rate": 9.964253798033959e-07,
|
256 |
+
"loss": 1.1953,
|
257 |
+
"step": 33
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 0.26459143968871596,
|
261 |
+
"grad_norm": 1.1667935320099643,
|
262 |
+
"learning_rate": 9.959623149394347e-07,
|
263 |
+
"loss": 1.1631,
|
264 |
+
"step": 34
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 0.2723735408560311,
|
268 |
+
"grad_norm": 1.1728769110368067,
|
269 |
+
"learning_rate": 9.954954954954955e-07,
|
270 |
+
"loss": 1.1979,
|
271 |
+
"step": 35
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 0.2801556420233463,
|
275 |
+
"grad_norm": 1.1879928099076524,
|
276 |
+
"learning_rate": 9.950248756218905e-07,
|
277 |
+
"loss": 1.2109,
|
278 |
+
"step": 36
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.28793774319066145,
|
282 |
+
"grad_norm": 1.0793090685595952,
|
283 |
+
"learning_rate": 9.94550408719346e-07,
|
284 |
+
"loss": 1.1517,
|
285 |
+
"step": 37
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.29571984435797666,
|
289 |
+
"grad_norm": 1.2162353553544407,
|
290 |
+
"learning_rate": 9.940720474236205e-07,
|
291 |
+
"loss": 1.1667,
|
292 |
+
"step": 38
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"epoch": 0.3035019455252918,
|
296 |
+
"grad_norm": 1.1553136659353096,
|
297 |
+
"learning_rate": 9.935897435897434e-07,
|
298 |
+
"loss": 1.1564,
|
299 |
+
"step": 39
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 0.311284046692607,
|
303 |
+
"grad_norm": 0.8975925277420491,
|
304 |
+
"learning_rate": 9.931034482758622e-07,
|
305 |
+
"loss": 1.1409,
|
306 |
+
"step": 40
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"epoch": 0.31906614785992216,
|
310 |
+
"grad_norm": 0.848010373104077,
|
311 |
+
"learning_rate": 9.92613111726685e-07,
|
312 |
+
"loss": 1.1489,
|
313 |
+
"step": 41
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"epoch": 0.32684824902723736,
|
317 |
+
"grad_norm": 0.8445987480588121,
|
318 |
+
"learning_rate": 9.921186833565135e-07,
|
319 |
+
"loss": 1.1518,
|
320 |
+
"step": 42
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.3346303501945525,
|
324 |
+
"grad_norm": 0.8910485581415633,
|
325 |
+
"learning_rate": 9.916201117318436e-07,
|
326 |
+
"loss": 1.1663,
|
327 |
+
"step": 43
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.3424124513618677,
|
331 |
+
"grad_norm": 0.8226662462385251,
|
332 |
+
"learning_rate": 9.911173445535296e-07,
|
333 |
+
"loss": 1.1975,
|
334 |
+
"step": 44
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"epoch": 0.35019455252918286,
|
338 |
+
"grad_norm": 1.266452159867259,
|
339 |
+
"learning_rate": 9.906103286384975e-07,
|
340 |
+
"loss": 1.19,
|
341 |
+
"step": 45
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 0.35797665369649806,
|
345 |
+
"grad_norm": 0.8228834741800612,
|
346 |
+
"learning_rate": 9.900990099009902e-07,
|
347 |
+
"loss": 1.1672,
|
348 |
+
"step": 46
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"epoch": 0.3657587548638132,
|
352 |
+
"grad_norm": 0.7967316496651314,
|
353 |
+
"learning_rate": 9.895833333333333e-07,
|
354 |
+
"loss": 1.1653,
|
355 |
+
"step": 47
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"epoch": 0.3735408560311284,
|
359 |
+
"grad_norm": 0.8385685679438281,
|
360 |
+
"learning_rate": 9.8906324298621e-07,
|
361 |
+
"loss": 1.2161,
|
362 |
+
"step": 48
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.38132295719844356,
|
366 |
+
"grad_norm": 0.7832731689890803,
|
367 |
+
"learning_rate": 9.88538681948424e-07,
|
368 |
+
"loss": 1.1493,
|
369 |
+
"step": 49
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.38910505836575876,
|
373 |
+
"grad_norm": 0.7470950974115376,
|
374 |
+
"learning_rate": 9.88009592326139e-07,
|
375 |
+
"loss": 1.1444,
|
376 |
+
"step": 50
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 0.3968871595330739,
|
380 |
+
"grad_norm": 0.9407081004608256,
|
381 |
+
"learning_rate": 9.874759152215799e-07,
|
382 |
+
"loss": 1.2262,
|
383 |
+
"step": 51
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 0.4046692607003891,
|
387 |
+
"grad_norm": 0.7807613751449256,
|
388 |
+
"learning_rate": 9.869375907111757e-07,
|
389 |
+
"loss": 1.1761,
|
390 |
+
"step": 52
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"epoch": 0.41245136186770426,
|
394 |
+
"grad_norm": 0.7814091677207984,
|
395 |
+
"learning_rate": 9.86394557823129e-07,
|
396 |
+
"loss": 1.1684,
|
397 |
+
"step": 53
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"epoch": 0.42023346303501946,
|
401 |
+
"grad_norm": 0.7209307303105739,
|
402 |
+
"learning_rate": 9.858467545143973e-07,
|
403 |
+
"loss": 1.1429,
|
404 |
+
"step": 54
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 0.4280155642023346,
|
408 |
+
"grad_norm": 0.6839759799403674,
|
409 |
+
"learning_rate": 9.852941176470587e-07,
|
410 |
+
"loss": 1.1591,
|
411 |
+
"step": 55
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.4357976653696498,
|
415 |
+
"grad_norm": 0.7399500476567901,
|
416 |
+
"learning_rate": 9.847365829640571e-07,
|
417 |
+
"loss": 1.1264,
|
418 |
+
"step": 56
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"epoch": 0.44357976653696496,
|
422 |
+
"grad_norm": 0.7250794425256079,
|
423 |
+
"learning_rate": 9.841740850642927e-07,
|
424 |
+
"loss": 1.1764,
|
425 |
+
"step": 57
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.45136186770428016,
|
429 |
+
"grad_norm": 0.6729705016341,
|
430 |
+
"learning_rate": 9.836065573770493e-07,
|
431 |
+
"loss": 1.1557,
|
432 |
+
"step": 58
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"epoch": 0.4591439688715953,
|
436 |
+
"grad_norm": 0.6814295448695143,
|
437 |
+
"learning_rate": 9.830339321357286e-07,
|
438 |
+
"loss": 1.1674,
|
439 |
+
"step": 59
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"epoch": 0.4669260700389105,
|
443 |
+
"grad_norm": 0.6657154699765654,
|
444 |
+
"learning_rate": 9.824561403508773e-07,
|
445 |
+
"loss": 1.1441,
|
446 |
+
"step": 60
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.47470817120622566,
|
450 |
+
"grad_norm": 0.6256174713114324,
|
451 |
+
"learning_rate": 9.818731117824774e-07,
|
452 |
+
"loss": 1.1797,
|
453 |
+
"step": 61
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.48249027237354086,
|
457 |
+
"grad_norm": 0.6194904383458136,
|
458 |
+
"learning_rate": 9.81284774911482e-07,
|
459 |
+
"loss": 1.1476,
|
460 |
+
"step": 62
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"epoch": 0.490272373540856,
|
464 |
+
"grad_norm": 0.7409013991341397,
|
465 |
+
"learning_rate": 9.80691056910569e-07,
|
466 |
+
"loss": 1.1563,
|
467 |
+
"step": 63
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 0.4980544747081712,
|
471 |
+
"grad_norm": 0.6529431777087924,
|
472 |
+
"learning_rate": 9.800918836140888e-07,
|
473 |
+
"loss": 1.13,
|
474 |
+
"step": 64
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 0.4980544747081712,
|
478 |
+
"eval_loss": 0.993022084236145,
|
479 |
+
"eval_runtime": 193.0792,
|
480 |
+
"eval_samples_per_second": 13.963,
|
481 |
+
"eval_steps_per_second": 0.223,
|
482 |
+
"step": 64
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 0.5058365758754864,
|
486 |
+
"grad_norm": 0.6249987093009363,
|
487 |
+
"learning_rate": 9.794871794871796e-07,
|
488 |
+
"loss": 1.1365,
|
489 |
+
"step": 65
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.5136186770428015,
|
493 |
+
"grad_norm": 0.5714052179303046,
|
494 |
+
"learning_rate": 9.788768675940237e-07,
|
495 |
+
"loss": 1.1486,
|
496 |
+
"step": 66
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 0.5214007782101168,
|
500 |
+
"grad_norm": 0.6266253830635832,
|
501 |
+
"learning_rate": 9.782608695652173e-07,
|
502 |
+
"loss": 1.1297,
|
503 |
+
"step": 67
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 0.5291828793774319,
|
507 |
+
"grad_norm": 0.6413361931814175,
|
508 |
+
"learning_rate": 9.776391055642225e-07,
|
509 |
+
"loss": 1.1346,
|
510 |
+
"step": 68
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"epoch": 0.5369649805447471,
|
514 |
+
"grad_norm": 0.6401174657840715,
|
515 |
+
"learning_rate": 9.770114942528735e-07,
|
516 |
+
"loss": 1.1443,
|
517 |
+
"step": 69
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"epoch": 0.5447470817120622,
|
521 |
+
"grad_norm": 0.6160976711769636,
|
522 |
+
"learning_rate": 9.763779527559055e-07,
|
523 |
+
"loss": 1.138,
|
524 |
+
"step": 70
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.5525291828793775,
|
528 |
+
"grad_norm": 0.6234000690415658,
|
529 |
+
"learning_rate": 9.757383966244725e-07,
|
530 |
+
"loss": 1.1018,
|
531 |
+
"step": 71
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.5603112840466926,
|
535 |
+
"grad_norm": 0.6528376037799454,
|
536 |
+
"learning_rate": 9.75092739798622e-07,
|
537 |
+
"loss": 1.1059,
|
538 |
+
"step": 72
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"epoch": 0.5680933852140078,
|
542 |
+
"grad_norm": 0.5652314830088928,
|
543 |
+
"learning_rate": 9.744408945686901e-07,
|
544 |
+
"loss": 1.1222,
|
545 |
+
"step": 73
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 0.5758754863813229,
|
549 |
+
"grad_norm": 0.585673991341348,
|
550 |
+
"learning_rate": 9.737827715355804e-07,
|
551 |
+
"loss": 1.1067,
|
552 |
+
"step": 74
|
553 |
+
},
|
554 |
+
{
|
555 |
+
"epoch": 0.5836575875486382,
|
556 |
+
"grad_norm": 0.5888031772006102,
|
557 |
+
"learning_rate": 9.731182795698924e-07,
|
558 |
+
"loss": 1.1495,
|
559 |
+
"step": 75
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"epoch": 0.5914396887159533,
|
563 |
+
"grad_norm": 0.6220423369607407,
|
564 |
+
"learning_rate": 9.72447325769854e-07,
|
565 |
+
"loss": 1.1197,
|
566 |
+
"step": 76
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.5992217898832685,
|
570 |
+
"grad_norm": 0.6112403683619732,
|
571 |
+
"learning_rate": 9.71769815418024e-07,
|
572 |
+
"loss": 1.1382,
|
573 |
+
"step": 77
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.6070038910505836,
|
577 |
+
"grad_norm": 0.6459405223806135,
|
578 |
+
"learning_rate": 9.710856519367158e-07,
|
579 |
+
"loss": 1.1518,
|
580 |
+
"step": 78
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"epoch": 0.6147859922178989,
|
584 |
+
"grad_norm": 0.6209769863467987,
|
585 |
+
"learning_rate": 9.703947368421054e-07,
|
586 |
+
"loss": 1.1239,
|
587 |
+
"step": 79
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"epoch": 0.622568093385214,
|
591 |
+
"grad_norm": 0.5843668163519747,
|
592 |
+
"learning_rate": 9.696969696969695e-07,
|
593 |
+
"loss": 1.1433,
|
594 |
+
"step": 80
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 0.6303501945525292,
|
598 |
+
"grad_norm": 0.5969841579813842,
|
599 |
+
"learning_rate": 9.689922480620153e-07,
|
600 |
+
"loss": 1.1312,
|
601 |
+
"step": 81
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 0.6381322957198443,
|
605 |
+
"grad_norm": 0.5567475366696957,
|
606 |
+
"learning_rate": 9.68280467445743e-07,
|
607 |
+
"loss": 1.0717,
|
608 |
+
"step": 82
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.6459143968871596,
|
612 |
+
"grad_norm": 0.8841164939701298,
|
613 |
+
"learning_rate": 9.675615212527965e-07,
|
614 |
+
"loss": 1.1229,
|
615 |
+
"step": 83
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.6536964980544747,
|
619 |
+
"grad_norm": 0.6021627871478876,
|
620 |
+
"learning_rate": 9.668353007307475e-07,
|
621 |
+
"loss": 1.119,
|
622 |
+
"step": 84
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"epoch": 0.6614785992217899,
|
626 |
+
"grad_norm": 0.561817882301385,
|
627 |
+
"learning_rate": 9.661016949152542e-07,
|
628 |
+
"loss": 1.1298,
|
629 |
+
"step": 85
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"epoch": 0.669260700389105,
|
633 |
+
"grad_norm": 0.6382338925455957,
|
634 |
+
"learning_rate": 9.653605905735377e-07,
|
635 |
+
"loss": 1.1168,
|
636 |
+
"step": 86
|
637 |
+
},
|
638 |
+
{
|
639 |
+
"epoch": 0.6770428015564203,
|
640 |
+
"grad_norm": 0.602322633909128,
|
641 |
+
"learning_rate": 9.646118721461186e-07,
|
642 |
+
"loss": 1.1291,
|
643 |
+
"step": 87
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"epoch": 0.6848249027237354,
|
647 |
+
"grad_norm": 0.5990302538351283,
|
648 |
+
"learning_rate": 9.63855421686747e-07,
|
649 |
+
"loss": 1.1332,
|
650 |
+
"step": 88
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.6926070038910506,
|
654 |
+
"grad_norm": 0.5869777798515858,
|
655 |
+
"learning_rate": 9.630911188004613e-07,
|
656 |
+
"loss": 1.1404,
|
657 |
+
"step": 89
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.7003891050583657,
|
661 |
+
"grad_norm": 0.5933684142522954,
|
662 |
+
"learning_rate": 9.623188405797102e-07,
|
663 |
+
"loss": 1.1528,
|
664 |
+
"step": 90
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"epoch": 0.708171206225681,
|
668 |
+
"grad_norm": 0.6118209958752469,
|
669 |
+
"learning_rate": 9.615384615384615e-07,
|
670 |
+
"loss": 1.1486,
|
671 |
+
"step": 91
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"epoch": 0.7159533073929961,
|
675 |
+
"grad_norm": 0.626189163793506,
|
676 |
+
"learning_rate": 9.607498535442295e-07,
|
677 |
+
"loss": 1.1079,
|
678 |
+
"step": 92
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"epoch": 0.7237354085603113,
|
682 |
+
"grad_norm": 0.5824843670586056,
|
683 |
+
"learning_rate": 9.599528857479386e-07,
|
684 |
+
"loss": 1.1471,
|
685 |
+
"step": 93
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"epoch": 0.7315175097276264,
|
689 |
+
"grad_norm": 0.6045894845802466,
|
690 |
+
"learning_rate": 9.591474245115454e-07,
|
691 |
+
"loss": 1.0899,
|
692 |
+
"step": 94
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.7392996108949417,
|
696 |
+
"grad_norm": 0.5453528811988809,
|
697 |
+
"learning_rate": 9.583333333333334e-07,
|
698 |
+
"loss": 1.1232,
|
699 |
+
"step": 95
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.7470817120622568,
|
703 |
+
"grad_norm": 0.6430932607963977,
|
704 |
+
"learning_rate": 9.57510472770796e-07,
|
705 |
+
"loss": 1.0917,
|
706 |
+
"step": 96
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 0.7470817120622568,
|
710 |
+
"eval_loss": 0.9749420881271362,
|
711 |
+
"eval_runtime": 194.1545,
|
712 |
+
"eval_samples_per_second": 13.886,
|
713 |
+
"eval_steps_per_second": 0.221,
|
714 |
+
"step": 96
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 0.754863813229572,
|
718 |
+
"grad_norm": 0.5852779384368416,
|
719 |
+
"learning_rate": 9.566787003610106e-07,
|
720 |
+
"loss": 1.1517,
|
721 |
+
"step": 97
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 0.7626459143968871,
|
725 |
+
"grad_norm": 0.6409842274490922,
|
726 |
+
"learning_rate": 9.55837870538415e-07,
|
727 |
+
"loss": 1.1254,
|
728 |
+
"step": 98
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 0.7704280155642024,
|
732 |
+
"grad_norm": 0.5639528294869124,
|
733 |
+
"learning_rate": 9.549878345498782e-07,
|
734 |
+
"loss": 1.1121,
|
735 |
+
"step": 99
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 0.7782101167315175,
|
739 |
+
"grad_norm": 0.6213244609041039,
|
740 |
+
"learning_rate": 9.541284403669725e-07,
|
741 |
+
"loss": 1.0915,
|
742 |
+
"step": 100
|
743 |
+
},
|
744 |
+
{
|
745 |
+
"epoch": 0.7859922178988327,
|
746 |
+
"grad_norm": 0.6551114483360119,
|
747 |
+
"learning_rate": 9.53259532595326e-07,
|
748 |
+
"loss": 1.1534,
|
749 |
+
"step": 101
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"epoch": 0.7937743190661478,
|
753 |
+
"grad_norm": 0.6413194021766461,
|
754 |
+
"learning_rate": 9.523809523809523e-07,
|
755 |
+
"loss": 1.1432,
|
756 |
+
"step": 102
|
757 |
+
},
|
758 |
+
{
|
759 |
+
"epoch": 0.8015564202334631,
|
760 |
+
"grad_norm": 0.5912246112879433,
|
761 |
+
"learning_rate": 9.514925373134328e-07,
|
762 |
+
"loss": 1.1856,
|
763 |
+
"step": 103
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"epoch": 0.8093385214007782,
|
767 |
+
"grad_norm": 0.5929209222521526,
|
768 |
+
"learning_rate": 9.505941213258286e-07,
|
769 |
+
"loss": 1.1097,
|
770 |
+
"step": 104
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 0.8171206225680934,
|
774 |
+
"grad_norm": 0.5781185505602303,
|
775 |
+
"learning_rate": 9.496855345911948e-07,
|
776 |
+
"loss": 1.093,
|
777 |
+
"step": 105
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 0.8249027237354085,
|
781 |
+
"grad_norm": 0.5850063235452896,
|
782 |
+
"learning_rate": 9.487666034155598e-07,
|
783 |
+
"loss": 1.1053,
|
784 |
+
"step": 106
|
785 |
+
},
|
786 |
+
{
|
787 |
+
"epoch": 0.8326848249027238,
|
788 |
+
"grad_norm": 0.5557542208140502,
|
789 |
+
"learning_rate": 9.478371501272264e-07,
|
790 |
+
"loss": 1.1072,
|
791 |
+
"step": 107
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"epoch": 0.8404669260700389,
|
795 |
+
"grad_norm": 0.6939378070209432,
|
796 |
+
"learning_rate": 9.46896992962252e-07,
|
797 |
+
"loss": 1.1557,
|
798 |
+
"step": 108
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"epoch": 0.8482490272373541,
|
802 |
+
"grad_norm": 0.5821602482631876,
|
803 |
+
"learning_rate": 9.459459459459459e-07,
|
804 |
+
"loss": 1.1008,
|
805 |
+
"step": 109
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"epoch": 0.8560311284046692,
|
809 |
+
"grad_norm": 0.5641222765431608,
|
810 |
+
"learning_rate": 9.449838187702264e-07,
|
811 |
+
"loss": 1.1066,
|
812 |
+
"step": 110
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 0.8638132295719845,
|
816 |
+
"grad_norm": 0.6073853509255491,
|
817 |
+
"learning_rate": 9.440104166666666e-07,
|
818 |
+
"loss": 1.1347,
|
819 |
+
"step": 111
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 0.8715953307392996,
|
823 |
+
"grad_norm": 0.6652073708936578,
|
824 |
+
"learning_rate": 9.430255402750491e-07,
|
825 |
+
"loss": 1.1539,
|
826 |
+
"step": 112
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 0.8793774319066148,
|
830 |
+
"grad_norm": 0.5779065641712691,
|
831 |
+
"learning_rate": 9.420289855072464e-07,
|
832 |
+
"loss": 1.1286,
|
833 |
+
"step": 113
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"epoch": 0.8871595330739299,
|
837 |
+
"grad_norm": 1.0893325101395284,
|
838 |
+
"learning_rate": 9.410205434062292e-07,
|
839 |
+
"loss": 1.1327,
|
840 |
+
"step": 114
|
841 |
+
},
|
842 |
+
{
|
843 |
+
"epoch": 0.8949416342412452,
|
844 |
+
"grad_norm": 0.5897769203979899,
|
845 |
+
"learning_rate": 9.399999999999999e-07,
|
846 |
+
"loss": 1.1083,
|
847 |
+
"step": 115
|
848 |
+
},
|
849 |
+
{
|
850 |
+
"epoch": 0.9027237354085603,
|
851 |
+
"grad_norm": 0.5962317172776513,
|
852 |
+
"learning_rate": 9.389671361502347e-07,
|
853 |
+
"loss": 1.0842,
|
854 |
+
"step": 116
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 0.9105058365758755,
|
858 |
+
"grad_norm": 0.5955932544091112,
|
859 |
+
"learning_rate": 9.379217273954116e-07,
|
860 |
+
"loss": 1.1366,
|
861 |
+
"step": 117
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 0.9182879377431906,
|
865 |
+
"grad_norm": 0.5949693376391756,
|
866 |
+
"learning_rate": 9.368635437881874e-07,
|
867 |
+
"loss": 1.1094,
|
868 |
+
"step": 118
|
869 |
+
},
|
870 |
+
{
|
871 |
+
"epoch": 0.9260700389105059,
|
872 |
+
"grad_norm": 0.6044514449577904,
|
873 |
+
"learning_rate": 9.357923497267759e-07,
|
874 |
+
"loss": 1.1639,
|
875 |
+
"step": 119
|
876 |
+
},
|
877 |
+
{
|
878 |
+
"epoch": 0.933852140077821,
|
879 |
+
"grad_norm": 0.625428671903296,
|
880 |
+
"learning_rate": 9.347079037800687e-07,
|
881 |
+
"loss": 1.1054,
|
882 |
+
"step": 120
|
883 |
+
},
|
884 |
+
{
|
885 |
+
"epoch": 0.9416342412451362,
|
886 |
+
"grad_norm": 0.5297520430435139,
|
887 |
+
"learning_rate": 9.33609958506224e-07,
|
888 |
+
"loss": 1.1396,
|
889 |
+
"step": 121
|
890 |
+
},
|
891 |
+
{
|
892 |
+
"epoch": 0.9494163424124513,
|
893 |
+
"grad_norm": 0.604395748227856,
|
894 |
+
"learning_rate": 9.324982602644397e-07,
|
895 |
+
"loss": 1.1297,
|
896 |
+
"step": 122
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 0.9571984435797666,
|
900 |
+
"grad_norm": 0.5935060150814615,
|
901 |
+
"learning_rate": 9.313725490196079e-07,
|
902 |
+
"loss": 1.1327,
|
903 |
+
"step": 123
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.9649805447470817,
|
907 |
+
"grad_norm": 0.6213246371577336,
|
908 |
+
"learning_rate": 9.30232558139535e-07,
|
909 |
+
"loss": 1.1655,
|
910 |
+
"step": 124
|
911 |
+
},
|
912 |
+
{
|
913 |
+
"epoch": 0.9727626459143969,
|
914 |
+
"grad_norm": 0.5459987203799985,
|
915 |
+
"learning_rate": 9.290780141843972e-07,
|
916 |
+
"loss": 1.1119,
|
917 |
+
"step": 125
|
918 |
+
},
|
919 |
+
{
|
920 |
+
"epoch": 0.980544747081712,
|
921 |
+
"grad_norm": 0.5862633284111678,
|
922 |
+
"learning_rate": 9.279086366880799e-07,
|
923 |
+
"loss": 1.1102,
|
924 |
+
"step": 126
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"epoch": 0.9883268482490273,
|
928 |
+
"grad_norm": 0.5749701605073742,
|
929 |
+
"learning_rate": 9.267241379310344e-07,
|
930 |
+
"loss": 1.1215,
|
931 |
+
"step": 127
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 0.9961089494163424,
|
935 |
+
"grad_norm": 0.5608948491944076,
|
936 |
+
"learning_rate": 9.25524222704266e-07,
|
937 |
+
"loss": 1.1171,
|
938 |
+
"step": 128
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 0.9961089494163424,
|
942 |
+
"eval_loss": 0.9638092517852783,
|
943 |
+
"eval_runtime": 193.8483,
|
944 |
+
"eval_samples_per_second": 13.908,
|
945 |
+
"eval_steps_per_second": 0.222,
|
946 |
+
"step": 128
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 1.0,
|
950 |
+
"grad_norm": 0.5608948491944076,
|
951 |
+
"learning_rate": 9.243085880640464e-07,
|
952 |
+
"loss": 1.1281,
|
953 |
+
"step": 129
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"epoch": 1.0077821011673151,
|
957 |
+
"grad_norm": 0.8826714731817153,
|
958 |
+
"learning_rate": 9.230769230769229e-07,
|
959 |
+
"loss": 1.1385,
|
960 |
+
"step": 130
|
961 |
+
},
|
962 |
+
{
|
963 |
+
"epoch": 1.0155642023346303,
|
964 |
+
"grad_norm": 0.585537303127348,
|
965 |
+
"learning_rate": 9.218289085545723e-07,
|
966 |
+
"loss": 1.0753,
|
967 |
+
"step": 131
|
968 |
+
},
|
969 |
+
{
|
970 |
+
"epoch": 1.0233463035019454,
|
971 |
+
"grad_norm": 0.574845853397158,
|
972 |
+
"learning_rate": 9.205642167780252e-07,
|
973 |
+
"loss": 1.1466,
|
974 |
+
"step": 132
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 1.0311284046692606,
|
978 |
+
"grad_norm": 0.573244467973897,
|
979 |
+
"learning_rate": 9.192825112107622e-07,
|
980 |
+
"loss": 1.1359,
|
981 |
+
"step": 133
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 1.038910505836576,
|
985 |
+
"grad_norm": 0.6964714993014424,
|
986 |
+
"learning_rate": 9.179834462001504e-07,
|
987 |
+
"loss": 1.1122,
|
988 |
+
"step": 134
|
989 |
+
},
|
990 |
+
{
|
991 |
+
"epoch": 1.046692607003891,
|
992 |
+
"grad_norm": 0.641322046313728,
|
993 |
+
"learning_rate": 9.166666666666665e-07,
|
994 |
+
"loss": 1.0825,
|
995 |
+
"step": 135
|
996 |
+
},
|
997 |
+
{
|
998 |
+
"epoch": 1.0544747081712063,
|
999 |
+
"grad_norm": 0.5360716115631284,
|
1000 |
+
"learning_rate": 9.153318077803201e-07,
|
1001 |
+
"loss": 1.1006,
|
1002 |
+
"step": 136
|
1003 |
+
},
|
1004 |
+
{
|
1005 |
+
"epoch": 1.0622568093385214,
|
1006 |
+
"grad_norm": 0.5816374932590664,
|
1007 |
+
"learning_rate": 9.139784946236559e-07,
|
1008 |
+
"loss": 1.1116,
|
1009 |
+
"step": 137
|
1010 |
+
},
|
1011 |
+
{
|
1012 |
+
"epoch": 1.0700389105058365,
|
1013 |
+
"grad_norm": 0.6372126076146449,
|
1014 |
+
"learning_rate": 9.126063418406805e-07,
|
1015 |
+
"loss": 1.0979,
|
1016 |
+
"step": 138
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 1.0778210116731517,
|
1020 |
+
"grad_norm": 0.5578000693621826,
|
1021 |
+
"learning_rate": 9.11214953271028e-07,
|
1022 |
+
"loss": 1.1263,
|
1023 |
+
"step": 139
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 1.0856031128404668,
|
1027 |
+
"grad_norm": 0.5923651609485125,
|
1028 |
+
"learning_rate": 9.098039215686274e-07,
|
1029 |
+
"loss": 1.0966,
|
1030 |
+
"step": 140
|
1031 |
+
},
|
1032 |
+
{
|
1033 |
+
"epoch": 1.0933852140077822,
|
1034 |
+
"grad_norm": 0.533195556847129,
|
1035 |
+
"learning_rate": 9.083728278041073e-07,
|
1036 |
+
"loss": 1.1349,
|
1037 |
+
"step": 141
|
1038 |
+
},
|
1039 |
+
{
|
1040 |
+
"epoch": 1.1011673151750974,
|
1041 |
+
"grad_norm": 0.6329974401580136,
|
1042 |
+
"learning_rate": 9.069212410501193e-07,
|
1043 |
+
"loss": 1.1072,
|
1044 |
+
"step": 142
|
1045 |
+
},
|
1046 |
+
{
|
1047 |
+
"epoch": 1.1089494163424125,
|
1048 |
+
"grad_norm": 0.5546033043372056,
|
1049 |
+
"learning_rate": 9.054487179487179e-07,
|
1050 |
+
"loss": 1.1565,
|
1051 |
+
"step": 143
|
1052 |
+
},
|
1053 |
+
{
|
1054 |
+
"epoch": 1.1167315175097277,
|
1055 |
+
"grad_norm": 0.5975088088440533,
|
1056 |
+
"learning_rate": 9.03954802259887e-07,
|
1057 |
+
"loss": 1.0724,
|
1058 |
+
"step": 144
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 1.1245136186770428,
|
1062 |
+
"grad_norm": 0.57801276427658,
|
1063 |
+
"learning_rate": 9.024390243902439e-07,
|
1064 |
+
"loss": 1.1346,
|
1065 |
+
"step": 145
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 1.132295719844358,
|
1069 |
+
"grad_norm": 0.5879398504293435,
|
1070 |
+
"learning_rate": 9.009009009009008e-07,
|
1071 |
+
"loss": 1.159,
|
1072 |
+
"step": 146
|
1073 |
+
},
|
1074 |
+
{
|
1075 |
+
"epoch": 1.140077821011673,
|
1076 |
+
"grad_norm": 0.593628488224272,
|
1077 |
+
"learning_rate": 8.993399339933992e-07,
|
1078 |
+
"loss": 1.1464,
|
1079 |
+
"step": 147
|
1080 |
+
},
|
1081 |
+
{
|
1082 |
+
"epoch": 1.1478599221789882,
|
1083 |
+
"grad_norm": 0.5593315767964653,
|
1084 |
+
"learning_rate": 8.977556109725684e-07,
|
1085 |
+
"loss": 1.1054,
|
1086 |
+
"step": 148
|
1087 |
+
},
|
1088 |
+
{
|
1089 |
+
"epoch": 1.1556420233463034,
|
1090 |
+
"grad_norm": 0.5787699146029086,
|
1091 |
+
"learning_rate": 8.96147403685092e-07,
|
1092 |
+
"loss": 1.096,
|
1093 |
+
"step": 149
|
1094 |
+
},
|
1095 |
+
{
|
1096 |
+
"epoch": 1.1634241245136188,
|
1097 |
+
"grad_norm": 0.5877657497768165,
|
1098 |
+
"learning_rate": 8.945147679324893e-07,
|
1099 |
+
"loss": 1.0887,
|
1100 |
+
"step": 150
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 1.171206225680934,
|
1104 |
+
"grad_norm": 0.6197879903738175,
|
1105 |
+
"learning_rate": 8.928571428571428e-07,
|
1106 |
+
"loss": 1.1514,
|
1107 |
+
"step": 151
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 1.178988326848249,
|
1111 |
+
"grad_norm": 0.5393516857845513,
|
1112 |
+
"learning_rate": 8.911739502999142e-07,
|
1113 |
+
"loss": 1.1215,
|
1114 |
+
"step": 152
|
1115 |
+
},
|
1116 |
+
{
|
1117 |
+
"epoch": 1.1867704280155642,
|
1118 |
+
"grad_norm": 0.5758698948439026,
|
1119 |
+
"learning_rate": 8.894645941278064e-07,
|
1120 |
+
"loss": 1.0557,
|
1121 |
+
"step": 153
|
1122 |
+
},
|
1123 |
+
{
|
1124 |
+
"epoch": 1.1945525291828794,
|
1125 |
+
"grad_norm": 0.5870780530298951,
|
1126 |
+
"learning_rate": 8.877284595300261e-07,
|
1127 |
+
"loss": 1.0892,
|
1128 |
+
"step": 154
|
1129 |
+
},
|
1130 |
+
{
|
1131 |
+
"epoch": 1.2023346303501945,
|
1132 |
+
"grad_norm": 0.5933780513917563,
|
1133 |
+
"learning_rate": 8.859649122807017e-07,
|
1134 |
+
"loss": 1.1125,
|
1135 |
+
"step": 155
|
1136 |
+
},
|
1137 |
+
{
|
1138 |
+
"epoch": 1.2101167315175096,
|
1139 |
+
"grad_norm": 0.5615488624761017,
|
1140 |
+
"learning_rate": 8.841732979664014e-07,
|
1141 |
+
"loss": 1.1394,
|
1142 |
+
"step": 156
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 1.217898832684825,
|
1146 |
+
"grad_norm": 0.5960612312151845,
|
1147 |
+
"learning_rate": 8.823529411764706e-07,
|
1148 |
+
"loss": 1.0859,
|
1149 |
+
"step": 157
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 1.2256809338521402,
|
1153 |
+
"grad_norm": 0.6325808125841859,
|
1154 |
+
"learning_rate": 8.80503144654088e-07,
|
1155 |
+
"loss": 1.1128,
|
1156 |
+
"step": 158
|
1157 |
+
},
|
1158 |
+
{
|
1159 |
+
"epoch": 1.2334630350194553,
|
1160 |
+
"grad_norm": 0.6076576722454798,
|
1161 |
+
"learning_rate": 8.78623188405797e-07,
|
1162 |
+
"loss": 1.1092,
|
1163 |
+
"step": 159
|
1164 |
+
},
|
1165 |
+
{
|
1166 |
+
"epoch": 1.2412451361867705,
|
1167 |
+
"grad_norm": 0.5821560609671981,
|
1168 |
+
"learning_rate": 8.767123287671233e-07,
|
1169 |
+
"loss": 1.0963,
|
1170 |
+
"step": 160
|
1171 |
+
},
|
1172 |
+
{
|
1173 |
+
"epoch": 1.2412451361867705,
|
1174 |
+
"eval_loss": 0.9557842016220093,
|
1175 |
+
"eval_runtime": 193.7527,
|
1176 |
+
"eval_samples_per_second": 13.915,
|
1177 |
+
"eval_steps_per_second": 0.222,
|
1178 |
+
"step": 160
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 1.2490272373540856,
|
1182 |
+
"grad_norm": 0.5621223931485095,
|
1183 |
+
"learning_rate": 8.747697974217309e-07,
|
1184 |
+
"loss": 1.1338,
|
1185 |
+
"step": 161
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 1.2568093385214008,
|
1189 |
+
"grad_norm": 0.5962800493628467,
|
1190 |
+
"learning_rate": 8.727948003714019e-07,
|
1191 |
+
"loss": 1.1388,
|
1192 |
+
"step": 162
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 1.264591439688716,
|
1196 |
+
"grad_norm": 0.5814349430158473,
|
1197 |
+
"learning_rate": 8.707865168539326e-07,
|
1198 |
+
"loss": 1.1038,
|
1199 |
+
"step": 163
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 1.272373540856031,
|
1203 |
+
"grad_norm": 0.6004347939909851,
|
1204 |
+
"learning_rate": 8.687440982058545e-07,
|
1205 |
+
"loss": 1.143,
|
1206 |
+
"step": 164
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 1.2801556420233462,
|
1210 |
+
"grad_norm": 0.5948532065914537,
|
1211 |
+
"learning_rate": 8.666666666666666e-07,
|
1212 |
+
"loss": 1.155,
|
1213 |
+
"step": 165
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 1.2879377431906613,
|
1217 |
+
"grad_norm": 0.5570114843646816,
|
1218 |
+
"learning_rate": 8.645533141210375e-07,
|
1219 |
+
"loss": 1.095,
|
1220 |
+
"step": 166
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 1.2957198443579767,
|
1224 |
+
"grad_norm": 0.6592254796476543,
|
1225 |
+
"learning_rate": 8.624031007751938e-07,
|
1226 |
+
"loss": 1.1114,
|
1227 |
+
"step": 167
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 1.3035019455252919,
|
1231 |
+
"grad_norm": 0.5375793451912569,
|
1232 |
+
"learning_rate": 8.602150537634409e-07,
|
1233 |
+
"loss": 1.1018,
|
1234 |
+
"step": 168
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 1.311284046692607,
|
1238 |
+
"grad_norm": 0.5774524273066066,
|
1239 |
+
"learning_rate": 8.579881656804733e-07,
|
1240 |
+
"loss": 1.0866,
|
1241 |
+
"step": 169
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 1.3190661478599222,
|
1245 |
+
"grad_norm": 0.5767675794480738,
|
1246 |
+
"learning_rate": 8.557213930348258e-07,
|
1247 |
+
"loss": 1.0919,
|
1248 |
+
"step": 170
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 1.3268482490272373,
|
1252 |
+
"grad_norm": 0.5424563326577124,
|
1253 |
+
"learning_rate": 8.534136546184737e-07,
|
1254 |
+
"loss": 1.097,
|
1255 |
+
"step": 171
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 1.3346303501945525,
|
1259 |
+
"grad_norm": 0.5504324773913235,
|
1260 |
+
"learning_rate": 8.510638297872341e-07,
|
1261 |
+
"loss": 1.1088,
|
1262 |
+
"step": 172
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 1.3424124513618678,
|
1266 |
+
"grad_norm": 0.5631592132878254,
|
1267 |
+
"learning_rate": 8.486707566462167e-07,
|
1268 |
+
"loss": 1.141,
|
1269 |
+
"step": 173
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 1.350194552529183,
|
1273 |
+
"grad_norm": 0.5987091201900138,
|
1274 |
+
"learning_rate": 8.462332301341588e-07,
|
1275 |
+
"loss": 1.1352,
|
1276 |
+
"step": 174
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 1.3579766536964981,
|
1280 |
+
"grad_norm": 0.5644686177164949,
|
1281 |
+
"learning_rate": 8.4375e-07,
|
1282 |
+
"loss": 1.1086,
|
1283 |
+
"step": 175
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 1.3657587548638133,
|
1287 |
+
"grad_norm": 0.5603933667416149,
|
1288 |
+
"learning_rate": 8.412197686645635e-07,
|
1289 |
+
"loss": 1.1066,
|
1290 |
+
"step": 176
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 1.3735408560311284,
|
1294 |
+
"grad_norm": 1.1467757879130558,
|
1295 |
+
"learning_rate": 8.386411889596603e-07,
|
1296 |
+
"loss": 1.1587,
|
1297 |
+
"step": 177
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 1.3813229571984436,
|
1301 |
+
"grad_norm": 0.7887321457214312,
|
1302 |
+
"learning_rate": 8.360128617363344e-07,
|
1303 |
+
"loss": 1.088,
|
1304 |
+
"step": 178
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 1.3891050583657587,
|
1308 |
+
"grad_norm": 1.3469817773930703,
|
1309 |
+
"learning_rate": 8.333333333333332e-07,
|
1310 |
+
"loss": 1.0843,
|
1311 |
+
"step": 179
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 1.3968871595330739,
|
1315 |
+
"grad_norm": 0.5467899896948426,
|
1316 |
+
"learning_rate": 8.306010928961747e-07,
|
1317 |
+
"loss": 1.1669,
|
1318 |
+
"step": 180
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 1.404669260700389,
|
1322 |
+
"grad_norm": 0.5788709158633432,
|
1323 |
+
"learning_rate": 8.278145695364237e-07,
|
1324 |
+
"loss": 1.1163,
|
1325 |
+
"step": 181
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 1.4124513618677041,
|
1329 |
+
"grad_norm": 0.5711519564174999,
|
1330 |
+
"learning_rate": 8.249721293199554e-07,
|
1331 |
+
"loss": 1.1085,
|
1332 |
+
"step": 182
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 1.4202334630350195,
|
1336 |
+
"grad_norm": 0.5648595416368181,
|
1337 |
+
"learning_rate": 8.220720720720721e-07,
|
1338 |
+
"loss": 1.0845,
|
1339 |
+
"step": 183
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 1.4280155642023347,
|
1343 |
+
"grad_norm": 0.525420807610935,
|
1344 |
+
"learning_rate": 8.191126279863481e-07,
|
1345 |
+
"loss": 1.1037,
|
1346 |
+
"step": 184
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 1.4357976653696498,
|
1350 |
+
"grad_norm": 0.6990978764976382,
|
1351 |
+
"learning_rate": 8.160919540229884e-07,
|
1352 |
+
"loss": 1.0672,
|
1353 |
+
"step": 185
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 1.443579766536965,
|
1357 |
+
"grad_norm": 0.565722083537725,
|
1358 |
+
"learning_rate": 8.130081300813006e-07,
|
1359 |
+
"loss": 1.1214,
|
1360 |
+
"step": 186
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 1.45136186770428,
|
1364 |
+
"grad_norm": 0.6283006226852244,
|
1365 |
+
"learning_rate": 8.098591549295774e-07,
|
1366 |
+
"loss": 1.0992,
|
1367 |
+
"step": 187
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 1.4591439688715953,
|
1371 |
+
"grad_norm": 0.5550197869791744,
|
1372 |
+
"learning_rate": 8.066429418742585e-07,
|
1373 |
+
"loss": 1.1136,
|
1374 |
+
"step": 188
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 1.4669260700389106,
|
1378 |
+
"grad_norm": 0.5659938483591545,
|
1379 |
+
"learning_rate": 8.03357314148681e-07,
|
1380 |
+
"loss": 1.0884,
|
1381 |
+
"step": 189
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 1.4747081712062258,
|
1385 |
+
"grad_norm": 0.5872567653519262,
|
1386 |
+
"learning_rate": 8e-07,
|
1387 |
+
"loss": 1.1283,
|
1388 |
+
"step": 190
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 1.482490272373541,
|
1392 |
+
"grad_norm": 0.6010641188429918,
|
1393 |
+
"learning_rate": 7.965686274509804e-07,
|
1394 |
+
"loss": 1.0959,
|
1395 |
+
"step": 191
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 1.490272373540856,
|
1399 |
+
"grad_norm": 0.559777631958916,
|
1400 |
+
"learning_rate": 7.930607187112763e-07,
|
1401 |
+
"loss": 1.1047,
|
1402 |
+
"step": 192
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 1.490272373540856,
|
1406 |
+
"eval_loss": 0.949611485004425,
|
1407 |
+
"eval_runtime": 193.3019,
|
1408 |
+
"eval_samples_per_second": 13.947,
|
1409 |
+
"eval_steps_per_second": 0.222,
|
1410 |
+
"step": 192
|
1411 |
+
},
|
1412 |
+
{
|
1413 |
+
"epoch": 1.4980544747081712,
|
1414 |
+
"grad_norm": 0.5608029800864122,
|
1415 |
+
"learning_rate": 7.894736842105262e-07,
|
1416 |
+
"loss": 1.0798,
|
1417 |
+
"step": 193
|
1418 |
+
},
|
1419 |
+
{
|
1420 |
+
"epoch": 1.5058365758754864,
|
1421 |
+
"grad_norm": 0.5765576143527928,
|
1422 |
+
"learning_rate": 7.85804816223067e-07,
|
1423 |
+
"loss": 1.0887,
|
1424 |
+
"step": 194
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 1.5136186770428015,
|
1428 |
+
"grad_norm": 0.5783903086304087,
|
1429 |
+
"learning_rate": 7.82051282051282e-07,
|
1430 |
+
"loss": 1.1015,
|
1431 |
+
"step": 195
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 1.5214007782101167,
|
1435 |
+
"grad_norm": 0.5252594928277367,
|
1436 |
+
"learning_rate": 7.782101167315173e-07,
|
1437 |
+
"loss": 1.0802,
|
1438 |
+
"step": 196
|
1439 |
+
},
|
1440 |
+
{
|
1441 |
+
"epoch": 1.5291828793774318,
|
1442 |
+
"grad_norm": 0.5435740719293682,
|
1443 |
+
"learning_rate": 7.742782152230972e-07,
|
1444 |
+
"loss": 1.0874,
|
1445 |
+
"step": 197
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 1.536964980544747,
|
1449 |
+
"grad_norm": 0.5369255828107669,
|
1450 |
+
"learning_rate": 7.702523240371846e-07,
|
1451 |
+
"loss": 1.095,
|
1452 |
+
"step": 198
|
1453 |
+
},
|
1454 |
+
{
|
1455 |
+
"epoch": 1.544747081712062,
|
1456 |
+
"grad_norm": 0.6850191931654889,
|
1457 |
+
"learning_rate": 7.661290322580645e-07,
|
1458 |
+
"loss": 1.0912,
|
1459 |
+
"step": 199
|
1460 |
+
},
|
1461 |
+
{
|
1462 |
+
"epoch": 1.5525291828793775,
|
1463 |
+
"grad_norm": 0.5688231956299873,
|
1464 |
+
"learning_rate": 7.619047619047617e-07,
|
1465 |
+
"loss": 1.0552,
|
1466 |
+
"step": 200
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 1.5603112840466926,
|
1470 |
+
"grad_norm": 0.5928997625619618,
|
1471 |
+
"learning_rate": 7.575757575757575e-07,
|
1472 |
+
"loss": 1.0621,
|
1473 |
+
"step": 201
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 1.5680933852140078,
|
1477 |
+
"grad_norm": 0.7716125599428396,
|
1478 |
+
"learning_rate": 7.531380753138075e-07,
|
1479 |
+
"loss": 1.0758,
|
1480 |
+
"step": 202
|
1481 |
+
},
|
1482 |
+
{
|
1483 |
+
"epoch": 1.575875486381323,
|
1484 |
+
"grad_norm": 0.5629855625488145,
|
1485 |
+
"learning_rate": 7.48587570621469e-07,
|
1486 |
+
"loss": 1.0606,
|
1487 |
+
"step": 203
|
1488 |
+
},
|
1489 |
+
{
|
1490 |
+
"epoch": 1.5836575875486383,
|
1491 |
+
"grad_norm": 0.5635371246521241,
|
1492 |
+
"learning_rate": 7.439198855507868e-07,
|
1493 |
+
"loss": 1.1029,
|
1494 |
+
"step": 204
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"epoch": 1.5914396887159534,
|
1498 |
+
"grad_norm": 0.6498217881509594,
|
1499 |
+
"learning_rate": 7.391304347826086e-07,
|
1500 |
+
"loss": 1.0737,
|
1501 |
+
"step": 205
|
1502 |
+
},
|
1503 |
+
{
|
1504 |
+
"epoch": 1.5992217898832686,
|
1505 |
+
"grad_norm": 0.5578772825539674,
|
1506 |
+
"learning_rate": 7.342143906020557e-07,
|
1507 |
+
"loss": 1.0938,
|
1508 |
+
"step": 206
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 1.6070038910505837,
|
1512 |
+
"grad_norm": 0.6895801155757268,
|
1513 |
+
"learning_rate": 7.291666666666667e-07,
|
1514 |
+
"loss": 1.108,
|
1515 |
+
"step": 207
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 1.6147859922178989,
|
1519 |
+
"grad_norm": 0.5472071760512172,
|
1520 |
+
"learning_rate": 7.239819004524887e-07,
|
1521 |
+
"loss": 1.0799,
|
1522 |
+
"step": 208
|
1523 |
+
},
|
1524 |
+
{
|
1525 |
+
"epoch": 1.622568093385214,
|
1526 |
+
"grad_norm": 0.5551855311336273,
|
1527 |
+
"learning_rate": 7.186544342507645e-07,
|
1528 |
+
"loss": 1.1011,
|
1529 |
+
"step": 209
|
1530 |
+
},
|
1531 |
+
{
|
1532 |
+
"epoch": 1.6303501945525292,
|
1533 |
+
"grad_norm": 0.5922020624280246,
|
1534 |
+
"learning_rate": 7.131782945736434e-07,
|
1535 |
+
"loss": 1.0883,
|
1536 |
+
"step": 210
|
1537 |
+
},
|
1538 |
+
{
|
1539 |
+
"epoch": 1.6381322957198443,
|
1540 |
+
"grad_norm": 0.5855500909084618,
|
1541 |
+
"learning_rate": 7.075471698113208e-07,
|
1542 |
+
"loss": 1.0277,
|
1543 |
+
"step": 211
|
1544 |
+
},
|
1545 |
+
{
|
1546 |
+
"epoch": 1.6459143968871595,
|
1547 |
+
"grad_norm": 0.5436280978302126,
|
1548 |
+
"learning_rate": 7.017543859649121e-07,
|
1549 |
+
"loss": 1.0829,
|
1550 |
+
"step": 212
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 1.6536964980544746,
|
1554 |
+
"grad_norm": 0.568803772556928,
|
1555 |
+
"learning_rate": 6.957928802588997e-07,
|
1556 |
+
"loss": 1.0778,
|
1557 |
+
"step": 213
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 1.6614785992217898,
|
1561 |
+
"grad_norm": 0.5954446162983249,
|
1562 |
+
"learning_rate": 6.89655172413793e-07,
|
1563 |
+
"loss": 1.0885,
|
1564 |
+
"step": 214
|
1565 |
+
},
|
1566 |
+
{
|
1567 |
+
"epoch": 1.669260700389105,
|
1568 |
+
"grad_norm": 0.6318388963180205,
|
1569 |
+
"learning_rate": 6.833333333333333e-07,
|
1570 |
+
"loss": 1.0761,
|
1571 |
+
"step": 215
|
1572 |
+
},
|
1573 |
+
{
|
1574 |
+
"epoch": 1.6770428015564203,
|
1575 |
+
"grad_norm": 1.0424216403770146,
|
1576 |
+
"learning_rate": 6.768189509306259e-07,
|
1577 |
+
"loss": 1.0882,
|
1578 |
+
"step": 216
|
1579 |
+
},
|
1580 |
+
{
|
1581 |
+
"epoch": 1.6848249027237354,
|
1582 |
+
"grad_norm": 0.5848369566451875,
|
1583 |
+
"learning_rate": 6.701030927835052e-07,
|
1584 |
+
"loss": 1.0933,
|
1585 |
+
"step": 217
|
1586 |
+
},
|
1587 |
+
{
|
1588 |
+
"epoch": 1.6926070038910506,
|
1589 |
+
"grad_norm": 0.6540113258331898,
|
1590 |
+
"learning_rate": 6.63176265270506e-07,
|
1591 |
+
"loss": 1.0997,
|
1592 |
+
"step": 218
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 1.7003891050583657,
|
1596 |
+
"grad_norm": 0.5945247307598128,
|
1597 |
+
"learning_rate": 6.560283687943263e-07,
|
1598 |
+
"loss": 1.1121,
|
1599 |
+
"step": 219
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 1.708171206225681,
|
1603 |
+
"grad_norm": 0.5812576783107466,
|
1604 |
+
"learning_rate": 6.486486486486486e-07,
|
1605 |
+
"loss": 1.1089,
|
1606 |
+
"step": 220
|
1607 |
+
},
|
1608 |
+
{
|
1609 |
+
"epoch": 1.7159533073929962,
|
1610 |
+
"grad_norm": 0.5422687962188623,
|
1611 |
+
"learning_rate": 6.41025641025641e-07,
|
1612 |
+
"loss": 1.0689,
|
1613 |
+
"step": 221
|
1614 |
+
},
|
1615 |
+
{
|
1616 |
+
"epoch": 1.7237354085603114,
|
1617 |
+
"grad_norm": 0.5655113478395188,
|
1618 |
+
"learning_rate": 6.33147113594041e-07,
|
1619 |
+
"loss": 1.1083,
|
1620 |
+
"step": 222
|
1621 |
+
},
|
1622 |
+
{
|
1623 |
+
"epoch": 1.7315175097276265,
|
1624 |
+
"grad_norm": 0.5479997273898842,
|
1625 |
+
"learning_rate": 6.249999999999999e-07,
|
1626 |
+
"loss": 1.0495,
|
1627 |
+
"step": 223
|
1628 |
+
},
|
1629 |
+
{
|
1630 |
+
"epoch": 1.7392996108949417,
|
1631 |
+
"grad_norm": 0.6082276343842562,
|
1632 |
+
"learning_rate": 6.165703275529864e-07,
|
1633 |
+
"loss": 1.0847,
|
1634 |
+
"step": 224
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 1.7392996108949417,
|
1638 |
+
"eval_loss": 0.9448344707489014,
|
1639 |
+
"eval_runtime": 193.8348,
|
1640 |
+
"eval_samples_per_second": 13.909,
|
1641 |
+
"eval_steps_per_second": 0.222,
|
1642 |
+
"step": 224
|
1643 |
+
},
|
1644 |
+
{
|
1645 |
+
"epoch": 1.7470817120622568,
|
1646 |
+
"grad_norm": 0.5456728126246078,
|
1647 |
+
"learning_rate": 6.078431372549019e-07,
|
1648 |
+
"loss": 1.0543,
|
1649 |
+
"step": 225
|
1650 |
+
},
|
1651 |
+
{
|
1652 |
+
"epoch": 1.754863813229572,
|
1653 |
+
"grad_norm": 0.8395615938618125,
|
1654 |
+
"learning_rate": 5.988023952095807e-07,
|
1655 |
+
"loss": 1.1133,
|
1656 |
+
"step": 226
|
1657 |
+
},
|
1658 |
+
{
|
1659 |
+
"epoch": 1.7626459143968871,
|
1660 |
+
"grad_norm": 0.5699433030581755,
|
1661 |
+
"learning_rate": 5.89430894308943e-07,
|
1662 |
+
"loss": 1.0878,
|
1663 |
+
"step": 227
|
1664 |
+
},
|
1665 |
+
{
|
1666 |
+
"epoch": 1.7704280155642023,
|
1667 |
+
"grad_norm": 0.5372956205386954,
|
1668 |
+
"learning_rate": 5.797101449275362e-07,
|
1669 |
+
"loss": 1.0749,
|
1670 |
+
"step": 228
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 1.7782101167315174,
|
1674 |
+
"grad_norm": 0.5485335276065648,
|
1675 |
+
"learning_rate": 5.696202531645569e-07,
|
1676 |
+
"loss": 1.056,
|
1677 |
+
"step": 229
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"epoch": 1.7859922178988326,
|
1681 |
+
"grad_norm": 0.5739239028380502,
|
1682 |
+
"learning_rate": 5.591397849462365e-07,
|
1683 |
+
"loss": 1.1175,
|
1684 |
+
"step": 230
|
1685 |
+
},
|
1686 |
+
{
|
1687 |
+
"epoch": 1.7937743190661477,
|
1688 |
+
"grad_norm": 0.5674136555108149,
|
1689 |
+
"learning_rate": 5.482456140350876e-07,
|
1690 |
+
"loss": 1.1061,
|
1691 |
+
"step": 231
|
1692 |
+
},
|
1693 |
+
{
|
1694 |
+
"epoch": 1.801556420233463,
|
1695 |
+
"grad_norm": 0.6414824329123738,
|
1696 |
+
"learning_rate": 5.369127516778523e-07,
|
1697 |
+
"loss": 1.1502,
|
1698 |
+
"step": 232
|
1699 |
+
},
|
1700 |
+
{
|
1701 |
+
"epoch": 1.8093385214007782,
|
1702 |
+
"grad_norm": 0.5567692960590215,
|
1703 |
+
"learning_rate": 5.251141552511415e-07,
|
1704 |
+
"loss": 1.074,
|
1705 |
+
"step": 233
|
1706 |
+
},
|
1707 |
+
{
|
1708 |
+
"epoch": 1.8171206225680934,
|
1709 |
+
"grad_norm": 0.5203307823955872,
|
1710 |
+
"learning_rate": 5.128205128205127e-07,
|
1711 |
+
"loss": 1.0576,
|
1712 |
+
"step": 234
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 1.8249027237354085,
|
1716 |
+
"grad_norm": 0.5480039922419879,
|
1717 |
+
"learning_rate": 5e-07,
|
1718 |
+
"loss": 1.0692,
|
1719 |
+
"step": 235
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 1.8326848249027239,
|
1723 |
+
"grad_norm": 0.6602968949965664,
|
1724 |
+
"learning_rate": 4.8661800486618e-07,
|
1725 |
+
"loss": 1.0716,
|
1726 |
+
"step": 236
|
1727 |
+
},
|
1728 |
+
{
|
1729 |
+
"epoch": 1.840466926070039,
|
1730 |
+
"grad_norm": 0.5621257570421472,
|
1731 |
+
"learning_rate": 4.72636815920398e-07,
|
1732 |
+
"loss": 1.1222,
|
1733 |
+
"step": 237
|
1734 |
+
},
|
1735 |
+
{
|
1736 |
+
"epoch": 1.8482490272373542,
|
1737 |
+
"grad_norm": 0.5778853314353605,
|
1738 |
+
"learning_rate": 4.5801526717557246e-07,
|
1739 |
+
"loss": 1.0651,
|
1740 |
+
"step": 238
|
1741 |
+
},
|
1742 |
+
{
|
1743 |
+
"epoch": 1.8560311284046693,
|
1744 |
+
"grad_norm": 0.5284341924121511,
|
1745 |
+
"learning_rate": 4.4270833333333337e-07,
|
1746 |
+
"loss": 1.0708,
|
1747 |
+
"step": 239
|
1748 |
+
},
|
1749 |
+
{
|
1750 |
+
"epoch": 1.8638132295719845,
|
1751 |
+
"grad_norm": 0.5965113916130589,
|
1752 |
+
"learning_rate": 4.266666666666667e-07,
|
1753 |
+
"loss": 1.0981,
|
1754 |
+
"step": 240
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 1.8715953307392996,
|
1758 |
+
"grad_norm": 0.5597034969209712,
|
1759 |
+
"learning_rate": 4.098360655737704e-07,
|
1760 |
+
"loss": 1.1179,
|
1761 |
+
"step": 241
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 1.8793774319066148,
|
1765 |
+
"grad_norm": 0.5536241929831267,
|
1766 |
+
"learning_rate": 3.92156862745098e-07,
|
1767 |
+
"loss": 1.0935,
|
1768 |
+
"step": 242
|
1769 |
+
},
|
1770 |
+
{
|
1771 |
+
"epoch": 1.88715953307393,
|
1772 |
+
"grad_norm": 0.5584595178829068,
|
1773 |
+
"learning_rate": 3.7356321839080463e-07,
|
1774 |
+
"loss": 1.1041,
|
1775 |
+
"step": 243
|
1776 |
+
},
|
1777 |
+
{
|
1778 |
+
"epoch": 1.894941634241245,
|
1779 |
+
"grad_norm": 0.5427158370327506,
|
1780 |
+
"learning_rate": 3.539823008849558e-07,
|
1781 |
+
"loss": 1.0756,
|
1782 |
+
"step": 244
|
1783 |
+
},
|
1784 |
+
{
|
1785 |
+
"epoch": 1.9027237354085602,
|
1786 |
+
"grad_norm": 0.5336572931407305,
|
1787 |
+
"learning_rate": 3.333333333333333e-07,
|
1788 |
+
"loss": 1.0514,
|
1789 |
+
"step": 245
|
1790 |
+
},
|
1791 |
+
{
|
1792 |
+
"epoch": 1.9105058365758754,
|
1793 |
+
"grad_norm": 0.5369948018962315,
|
1794 |
+
"learning_rate": 3.1152647975077885e-07,
|
1795 |
+
"loss": 1.1033,
|
1796 |
+
"step": 246
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"epoch": 1.9182879377431905,
|
1800 |
+
"grad_norm": 0.5717043508183633,
|
1801 |
+
"learning_rate": 2.8846153846153846e-07,
|
1802 |
+
"loss": 1.0766,
|
1803 |
+
"step": 247
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"epoch": 1.9260700389105059,
|
1807 |
+
"grad_norm": 0.5722908601877614,
|
1808 |
+
"learning_rate": 2.64026402640264e-07,
|
1809 |
+
"loss": 1.13,
|
1810 |
+
"step": 248
|
1811 |
+
},
|
1812 |
+
{
|
1813 |
+
"epoch": 1.933852140077821,
|
1814 |
+
"grad_norm": 0.5419564077709611,
|
1815 |
+
"learning_rate": 2.3809523809523806e-07,
|
1816 |
+
"loss": 1.0729,
|
1817 |
+
"step": 249
|
1818 |
+
},
|
1819 |
+
{
|
1820 |
+
"epoch": 1.9416342412451362,
|
1821 |
+
"grad_norm": 0.5886685089221407,
|
1822 |
+
"learning_rate": 2.1052631578947366e-07,
|
1823 |
+
"loss": 1.1071,
|
1824 |
+
"step": 250
|
1825 |
+
},
|
1826 |
+
{
|
1827 |
+
"epoch": 1.9494163424124513,
|
1828 |
+
"grad_norm": 0.5403936814687964,
|
1829 |
+
"learning_rate": 1.8115942028985505e-07,
|
1830 |
+
"loss": 1.0983,
|
1831 |
+
"step": 251
|
1832 |
+
},
|
1833 |
+
{
|
1834 |
+
"epoch": 1.9571984435797667,
|
1835 |
+
"grad_norm": 0.528388946685679,
|
1836 |
+
"learning_rate": 1.4981273408239696e-07,
|
1837 |
+
"loss": 1.1008,
|
1838 |
+
"step": 252
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 1.9649805447470818,
|
1842 |
+
"grad_norm": 0.5354770235277335,
|
1843 |
+
"learning_rate": 1.1627906976744186e-07,
|
1844 |
+
"loss": 1.1341,
|
1845 |
+
"step": 253
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 1.972762645914397,
|
1849 |
+
"grad_norm": 0.5252514289927873,
|
1850 |
+
"learning_rate": 8.032128514056224e-08,
|
1851 |
+
"loss": 1.0818,
|
1852 |
+
"step": 254
|
1853 |
+
},
|
1854 |
+
{
|
1855 |
+
"epoch": 1.9805447470817121,
|
1856 |
+
"grad_norm": 0.5858247065123809,
|
1857 |
+
"learning_rate": 4.166666666666666e-08,
|
1858 |
+
"loss": 1.0804,
|
1859 |
+
"step": 255
|
1860 |
+
},
|
1861 |
+
{
|
1862 |
+
"epoch": 1.9883268482490273,
|
1863 |
+
"grad_norm": 0.5257477128880242,
|
1864 |
+
"learning_rate": 0,
|
1865 |
+
"loss": 1.0901,
|
1866 |
+
"step": 256
|
1867 |
+
},
|
1868 |
+
{
|
1869 |
+
"epoch": 1.9883268482490273,
|
1870 |
+
"eval_loss": 0.9421924352645874,
|
1871 |
+
"eval_runtime": 193.7536,
|
1872 |
+
"eval_samples_per_second": 13.915,
|
1873 |
+
"eval_steps_per_second": 0.222,
|
1874 |
+
"step": 256
|
1875 |
+
}
|
1876 |
+
],
|
1877 |
+
"logging_steps": 1,
|
1878 |
+
"max_steps": 256,
|
1879 |
+
"num_input_tokens_seen": 0,
|
1880 |
+
"num_train_epochs": 2,
|
1881 |
+
"save_steps": 64,
|
1882 |
+
"stateful_callbacks": {
|
1883 |
+
"TrainerControl": {
|
1884 |
+
"args": {
|
1885 |
+
"should_epoch_stop": false,
|
1886 |
+
"should_evaluate": false,
|
1887 |
+
"should_log": false,
|
1888 |
+
"should_save": true,
|
1889 |
+
"should_training_stop": true
|
1890 |
+
},
|
1891 |
+
"attributes": {}
|
1892 |
+
}
|
1893 |
+
},
|
1894 |
+
"total_flos": 7.554618867587219e+18,
|
1895 |
+
"train_batch_size": 8,
|
1896 |
+
"trial_name": null,
|
1897 |
+
"trial_params": null
|
1898 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17496cd4d83504a4a3783884f366a4a092e8bd034b660325033ae7304af0dede
|
3 |
+
size 8977
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|