Neo111x commited on
Commit
1545e0c
·
verified ·
1 Parent(s): 734a440

Upload LlamaForCausalLM

Browse files
README.md CHANGED
@@ -1,76 +1,199 @@
 
 
 
 
1
 
2
- ### 1. Introduction of Falcon3-decompile-3b
3
 
4
- Falcon3-decompiler-3b aims to decompile x86 assembly instructions into C.
5
 
6
 
7
 
8
- ### 2. Evaluation Results
9
 
 
10
 
 
11
 
12
- ### 3. How to Use
13
- Here is an example of how to use our model
14
- Note: **Replace** asm_func with the function that you want to decompile
15
 
16
- **Decompilation:** Use falcon3-decompiler-3b to translate ghidra decompilation output to more readable code:
17
- ```python
18
- from transformers import AutoTokenizer, AutoModelForCausalLM
19
- import torch
 
 
 
20
 
21
- model_path = 'LLM4Binary/llm4decompile-1.3b-v1.5' # V1.5 Model
22
- tokenizer = AutoTokenizer.from_pretrained(model_path)
23
- model = AutoModelForCausalLM.from_pretrained(model_path,torch_dtype=torch.bfloat16).cuda()
24
 
25
- from transformers import AutoTokenizer, AutoModelForCausalLM
26
- import torch
27
- import os
28
 
29
- asm_func = """
30
- char * func0(char **param_1,int param_2)
 
31
 
32
- {
33
- char **ppcVar1;
34
- char *__s;
35
- size_t sVar2;
36
- int iVar3;
37
- char *pcVar4;
38
-
39
- pcVar4 = "";
40
- if (0 < param_2) {
41
- iVar3 = 0;
42
- ppcVar1 = param_1 + (ulong)(param_2 - 1) + 1;
43
- do {
44
- __s = *param_1;
45
- sVar2 = strlen(__s);
46
- if (iVar3 < (int)sVar2) {
47
- pcVar4 = __s;
48
- iVar3 = (int)sVar2;
49
- }
50
- param_1 = param_1 + 1;
51
- } while (param_1 != ppcVar1);
52
- }
53
- return pcVar4;
54
- }
55
- """
56
 
57
- before = f"# This is the assembly code:\n"#prompt
58
- after = "\n# What is the source code?\n"#prompt
59
- asm_func = before+asm_func.strip()+after
60
- model_path = "Neo111x/falcon3-decompiler-3b"
61
- tokenizer = AutoTokenizer.from_pretrained(model_path)
62
- model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype="auto", device_map="auto").to("cuda:0")
63
 
64
- inputs = tokenizer(asm_func, return_tensors="pt").to("cuda:0")
65
- with torch.no_grad():
66
- outputs = model.generate(**inputs, max_new_tokens=2048)### max length to 4096, max new tokens should be below the range
67
- c_func_decompile = tokenizer.decode(outputs[0][len(inputs[0]):-1])
68
 
69
- # Note only decompile one function, where the original file may contain multiple functions
70
 
71
- print(f'decompiled function:\n{c_func_decompile}')
72
- ```
73
 
74
- ### 4. Contact
75
 
76
- If you have any questions, please raise an issue.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
 
6
+ # Model Card for Model ID
7
 
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
11
 
12
+ ## Model Details
13
 
14
+ ### Model Description
15
 
16
+ <!-- Provide a longer summary of what this model is. -->
17
 
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
19
 
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
+ ### Model Sources [optional]
 
 
29
 
30
+ <!-- Provide the basic links for the model. -->
 
 
31
 
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
 
36
+ ## Uses
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
 
39
 
40
+ ### Direct Use
 
 
 
41
 
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
+ [More Information Needed]
 
45
 
46
+ ### Downstream Use [optional]
47
 
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/data/LLM4Decompile/output_models/falCodecompile-large",
3
+ "activation": "swiglu",
4
+ "architectures": [
5
+ "LlamaForCausalLM"
6
+ ],
7
+ "attention_bias": false,
8
+ "attention_dropout": 0.0,
9
+ "bos_token_id": 1,
10
+ "eos_token_id": 11,
11
+ "head_dim": 256,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 3072,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 9216,
16
+ "max_position_embeddings": 32768,
17
+ "mlp_bias": false,
18
+ "model_type": "llama",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 22,
21
+ "num_key_value_heads": 4,
22
+ "pretraining_tp": 1,
23
+ "rms_norm_eps": 1e-06,
24
+ "rope_scaling": null,
25
+ "rope_theta": 1000042,
26
+ "tie_word_embeddings": false,
27
+ "torch_dtype": "bfloat16",
28
+ "transformers_version": "4.47.1",
29
+ "use_cache": true,
30
+ "vocab_size": 131072
31
+ }
generation_config.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "eos_token_id": 11,
4
+ "transformers_version": "4.47.1"
5
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5be2237fc391a96934add9da11cbe05c32e6ff8838ebcbef14bdd57c0c825f21
3
+ size 4989378032
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9af1acd1a220ef2afe1fe8f19095f3cee803220db890833e5f9842dbc41104b8
3
+ size 1465955608
model.safetensors.index.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6455310336
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
143
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
194
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
197
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
206
+ "model.norm.weight": "model-00002-of-00002.safetensors"
207
+ }
208
+ }