root
commited on
Commit
·
b4e31f5
1
Parent(s):
f307d2f
update scripts
Browse files- run_mlm.py +556 -0
- xla_spawn.py +85 -0
run_mlm.py
ADDED
|
@@ -0,0 +1,556 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding=utf-8
|
| 3 |
+
# Copyright 2020 The HuggingFace Team All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
"""
|
| 17 |
+
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) on a text file or a dataset.
|
| 18 |
+
|
| 19 |
+
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
|
| 20 |
+
https://huggingface.co/models?filter=masked-lm
|
| 21 |
+
"""
|
| 22 |
+
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
|
| 23 |
+
|
| 24 |
+
import logging
|
| 25 |
+
import math
|
| 26 |
+
import os
|
| 27 |
+
import sys
|
| 28 |
+
from dataclasses import dataclass, field
|
| 29 |
+
from itertools import chain
|
| 30 |
+
from typing import Optional
|
| 31 |
+
|
| 32 |
+
import datasets
|
| 33 |
+
from datasets import load_dataset
|
| 34 |
+
|
| 35 |
+
import transformers
|
| 36 |
+
from transformers import (
|
| 37 |
+
CONFIG_MAPPING,
|
| 38 |
+
MODEL_FOR_MASKED_LM_MAPPING,
|
| 39 |
+
AutoConfig,
|
| 40 |
+
AutoModelForMaskedLM,
|
| 41 |
+
AutoTokenizer,
|
| 42 |
+
DataCollatorForLanguageModeling,
|
| 43 |
+
HfArgumentParser,
|
| 44 |
+
Trainer,
|
| 45 |
+
TrainingArguments,
|
| 46 |
+
set_seed,
|
| 47 |
+
)
|
| 48 |
+
from transformers.trainer_utils import get_last_checkpoint
|
| 49 |
+
from transformers.utils import check_min_version
|
| 50 |
+
from transformers.utils.versions import require_version
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
| 54 |
+
check_min_version("4.13.0.dev0")
|
| 55 |
+
|
| 56 |
+
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
| 57 |
+
|
| 58 |
+
logger = logging.getLogger(__name__)
|
| 59 |
+
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
|
| 60 |
+
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@dataclass
|
| 64 |
+
class ModelArguments:
|
| 65 |
+
"""
|
| 66 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
|
| 67 |
+
"""
|
| 68 |
+
|
| 69 |
+
model_name_or_path: Optional[str] = field(
|
| 70 |
+
default=None,
|
| 71 |
+
metadata={
|
| 72 |
+
"help": "The model checkpoint for weights initialization."
|
| 73 |
+
"Don't set if you want to train a model from scratch."
|
| 74 |
+
},
|
| 75 |
+
)
|
| 76 |
+
model_type: Optional[str] = field(
|
| 77 |
+
default=None,
|
| 78 |
+
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
|
| 79 |
+
)
|
| 80 |
+
config_overrides: Optional[str] = field(
|
| 81 |
+
default=None,
|
| 82 |
+
metadata={
|
| 83 |
+
"help": "Override some existing default config settings when a model is trained from scratch. Example: "
|
| 84 |
+
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
|
| 85 |
+
},
|
| 86 |
+
)
|
| 87 |
+
config_name: Optional[str] = field(
|
| 88 |
+
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
| 89 |
+
)
|
| 90 |
+
tokenizer_name: Optional[str] = field(
|
| 91 |
+
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
| 92 |
+
)
|
| 93 |
+
cache_dir: Optional[str] = field(
|
| 94 |
+
default=None,
|
| 95 |
+
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
| 96 |
+
)
|
| 97 |
+
use_fast_tokenizer: bool = field(
|
| 98 |
+
default=True,
|
| 99 |
+
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
| 100 |
+
)
|
| 101 |
+
model_revision: str = field(
|
| 102 |
+
default="main",
|
| 103 |
+
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
| 104 |
+
)
|
| 105 |
+
use_auth_token: bool = field(
|
| 106 |
+
default=False,
|
| 107 |
+
metadata={
|
| 108 |
+
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
|
| 109 |
+
"with private models)."
|
| 110 |
+
},
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
def __post_init__(self):
|
| 114 |
+
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
|
| 115 |
+
raise ValueError(
|
| 116 |
+
"--config_overrides can't be used in combination with --config_name or --model_name_or_path"
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
@dataclass
|
| 121 |
+
class DataTrainingArguments:
|
| 122 |
+
"""
|
| 123 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
| 124 |
+
"""
|
| 125 |
+
|
| 126 |
+
dataset_name: Optional[str] = field(
|
| 127 |
+
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
| 128 |
+
)
|
| 129 |
+
dataset_config_name: Optional[str] = field(
|
| 130 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
| 131 |
+
)
|
| 132 |
+
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
|
| 133 |
+
validation_file: Optional[str] = field(
|
| 134 |
+
default=None,
|
| 135 |
+
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
|
| 136 |
+
)
|
| 137 |
+
overwrite_cache: bool = field(
|
| 138 |
+
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
| 139 |
+
)
|
| 140 |
+
validation_split_percentage: Optional[int] = field(
|
| 141 |
+
default=5,
|
| 142 |
+
metadata={
|
| 143 |
+
"help": "The percentage of the train set used as validation set in case there's no validation split"
|
| 144 |
+
},
|
| 145 |
+
)
|
| 146 |
+
max_seq_length: Optional[int] = field(
|
| 147 |
+
default=None,
|
| 148 |
+
metadata={
|
| 149 |
+
"help": "The maximum total input sequence length after tokenization. Sequences longer "
|
| 150 |
+
"than this will be truncated."
|
| 151 |
+
},
|
| 152 |
+
)
|
| 153 |
+
preprocessing_num_workers: Optional[int] = field(
|
| 154 |
+
default=None,
|
| 155 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
| 156 |
+
)
|
| 157 |
+
mlm_probability: float = field(
|
| 158 |
+
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
|
| 159 |
+
)
|
| 160 |
+
line_by_line: bool = field(
|
| 161 |
+
default=False,
|
| 162 |
+
metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
|
| 163 |
+
)
|
| 164 |
+
pad_to_max_length: bool = field(
|
| 165 |
+
default=False,
|
| 166 |
+
metadata={
|
| 167 |
+
"help": "Whether to pad all samples to `max_seq_length`. "
|
| 168 |
+
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
|
| 169 |
+
},
|
| 170 |
+
)
|
| 171 |
+
max_train_samples: Optional[int] = field(
|
| 172 |
+
default=None,
|
| 173 |
+
metadata={
|
| 174 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
| 175 |
+
"value if set."
|
| 176 |
+
},
|
| 177 |
+
)
|
| 178 |
+
max_eval_samples: Optional[int] = field(
|
| 179 |
+
default=None,
|
| 180 |
+
metadata={
|
| 181 |
+
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
| 182 |
+
"value if set."
|
| 183 |
+
},
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
def __post_init__(self):
|
| 187 |
+
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
| 188 |
+
raise ValueError("Need either a dataset name or a training/validation file.")
|
| 189 |
+
else:
|
| 190 |
+
if self.train_file is not None:
|
| 191 |
+
extension = self.train_file.split(".")[-1]
|
| 192 |
+
if extension not in ["csv", "json", "txt"]:
|
| 193 |
+
raise ValueError("`train_file` should be a csv, a json or a txt file.")
|
| 194 |
+
if self.validation_file is not None:
|
| 195 |
+
extension = self.validation_file.split(".")[-1]
|
| 196 |
+
if extension not in ["csv", "json", "txt"]:
|
| 197 |
+
raise ValueError("`validation_file` should be a csv, a json or a txt file.")
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def main():
|
| 201 |
+
# See all possible arguments in src/transformers/training_args.py
|
| 202 |
+
# or by passing the --help flag to this script.
|
| 203 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
| 204 |
+
|
| 205 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
| 206 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
| 207 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
| 208 |
+
# let's parse it to get our arguments.
|
| 209 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
| 210 |
+
else:
|
| 211 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
| 212 |
+
|
| 213 |
+
# Setup logging
|
| 214 |
+
logging.basicConfig(
|
| 215 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 216 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
| 217 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
log_level = training_args.get_process_log_level()
|
| 221 |
+
logger.setLevel(log_level)
|
| 222 |
+
datasets.utils.logging.set_verbosity(log_level)
|
| 223 |
+
transformers.utils.logging.set_verbosity(log_level)
|
| 224 |
+
transformers.utils.logging.enable_default_handler()
|
| 225 |
+
transformers.utils.logging.enable_explicit_format()
|
| 226 |
+
|
| 227 |
+
# Log on each process the small summary:
|
| 228 |
+
logger.warning(
|
| 229 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
| 230 |
+
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
| 231 |
+
)
|
| 232 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
| 233 |
+
logger.info(f"Training/evaluation parameters {training_args}")
|
| 234 |
+
|
| 235 |
+
# Detecting last checkpoint.
|
| 236 |
+
last_checkpoint = None
|
| 237 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
| 238 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
| 239 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
| 240 |
+
raise ValueError(
|
| 241 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
| 242 |
+
"Use --overwrite_output_dir to overcome."
|
| 243 |
+
)
|
| 244 |
+
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
| 245 |
+
logger.info(
|
| 246 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
| 247 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
# Set seed before initializing model.
|
| 251 |
+
set_seed(training_args.seed)
|
| 252 |
+
|
| 253 |
+
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
|
| 254 |
+
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
| 255 |
+
# (the dataset will be downloaded automatically from the datasets Hub
|
| 256 |
+
#
|
| 257 |
+
# For CSV/JSON files, this script will use the column called 'text' or the first column. You can easily tweak this
|
| 258 |
+
# behavior (see below)
|
| 259 |
+
#
|
| 260 |
+
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
| 261 |
+
# download the dataset.
|
| 262 |
+
if data_args.dataset_name is not None:
|
| 263 |
+
# Downloading and loading a dataset from the hub.
|
| 264 |
+
raw_datasets = load_dataset(
|
| 265 |
+
data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir
|
| 266 |
+
)
|
| 267 |
+
if "validation" not in raw_datasets.keys():
|
| 268 |
+
raw_datasets["validation"] = load_dataset(
|
| 269 |
+
data_args.dataset_name,
|
| 270 |
+
data_args.dataset_config_name,
|
| 271 |
+
split=f"train[:{data_args.validation_split_percentage}%]",
|
| 272 |
+
cache_dir=model_args.cache_dir,
|
| 273 |
+
)
|
| 274 |
+
raw_datasets["train"] = load_dataset(
|
| 275 |
+
data_args.dataset_name,
|
| 276 |
+
data_args.dataset_config_name,
|
| 277 |
+
split=f"train[{data_args.validation_split_percentage}%:]",
|
| 278 |
+
cache_dir=model_args.cache_dir,
|
| 279 |
+
)
|
| 280 |
+
else:
|
| 281 |
+
data_files = {}
|
| 282 |
+
if data_args.train_file is not None:
|
| 283 |
+
data_files["train"] = data_args.train_file
|
| 284 |
+
extension = data_args.train_file.split(".")[-1]
|
| 285 |
+
if data_args.validation_file is not None:
|
| 286 |
+
data_files["validation"] = data_args.validation_file
|
| 287 |
+
extension = data_args.validation_file.split(".")[-1]
|
| 288 |
+
if extension == "txt":
|
| 289 |
+
extension = "text"
|
| 290 |
+
raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
|
| 291 |
+
|
| 292 |
+
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
|
| 293 |
+
if "validation" not in raw_datasets.keys():
|
| 294 |
+
raw_datasets["validation"] = load_dataset(
|
| 295 |
+
extension,
|
| 296 |
+
data_files=data_files,
|
| 297 |
+
split=f"train[:{data_args.validation_split_percentage}%]",
|
| 298 |
+
cache_dir=model_args.cache_dir,
|
| 299 |
+
)
|
| 300 |
+
raw_datasets["train"] = load_dataset(
|
| 301 |
+
extension,
|
| 302 |
+
data_files=data_files,
|
| 303 |
+
split=f"train[{data_args.validation_split_percentage}%:]",
|
| 304 |
+
cache_dir=model_args.cache_dir,
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
| 308 |
+
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
| 309 |
+
|
| 310 |
+
# Load pretrained model and tokenizer
|
| 311 |
+
#
|
| 312 |
+
# Distributed training:
|
| 313 |
+
# The .from_pretrained methods guarantee that only one local process can concurrently
|
| 314 |
+
# download model & vocab.
|
| 315 |
+
config_kwargs = {
|
| 316 |
+
"cache_dir": model_args.cache_dir,
|
| 317 |
+
"revision": model_args.model_revision,
|
| 318 |
+
"use_auth_token": True if model_args.use_auth_token else None,
|
| 319 |
+
}
|
| 320 |
+
if model_args.config_name:
|
| 321 |
+
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
|
| 322 |
+
elif model_args.model_name_or_path:
|
| 323 |
+
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
|
| 324 |
+
else:
|
| 325 |
+
config = CONFIG_MAPPING[model_args.model_type]()
|
| 326 |
+
logger.warning("You are instantiating a new config instance from scratch.")
|
| 327 |
+
if model_args.config_overrides is not None:
|
| 328 |
+
logger.info(f"Overriding config: {model_args.config_overrides}")
|
| 329 |
+
config.update_from_string(model_args.config_overrides)
|
| 330 |
+
logger.info(f"New config: {config}")
|
| 331 |
+
|
| 332 |
+
tokenizer_kwargs = {
|
| 333 |
+
"cache_dir": model_args.cache_dir,
|
| 334 |
+
"use_fast": model_args.use_fast_tokenizer,
|
| 335 |
+
"revision": model_args.model_revision,
|
| 336 |
+
"use_auth_token": True if model_args.use_auth_token else None,
|
| 337 |
+
}
|
| 338 |
+
if model_args.tokenizer_name:
|
| 339 |
+
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
|
| 340 |
+
elif model_args.model_name_or_path:
|
| 341 |
+
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
|
| 342 |
+
else:
|
| 343 |
+
raise ValueError(
|
| 344 |
+
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
|
| 345 |
+
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
if model_args.model_name_or_path:
|
| 349 |
+
model = AutoModelForMaskedLM.from_pretrained(
|
| 350 |
+
model_args.model_name_or_path,
|
| 351 |
+
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
| 352 |
+
config=config,
|
| 353 |
+
cache_dir=model_args.cache_dir,
|
| 354 |
+
revision=model_args.model_revision,
|
| 355 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
| 356 |
+
)
|
| 357 |
+
else:
|
| 358 |
+
logger.info("Training new model from scratch")
|
| 359 |
+
model = AutoModelForMaskedLM.from_config(config)
|
| 360 |
+
|
| 361 |
+
model.resize_token_embeddings(len(tokenizer))
|
| 362 |
+
|
| 363 |
+
# Preprocessing the datasets.
|
| 364 |
+
# First we tokenize all the texts.
|
| 365 |
+
if training_args.do_train:
|
| 366 |
+
column_names = raw_datasets["train"].column_names
|
| 367 |
+
else:
|
| 368 |
+
column_names = raw_datasets["validation"].column_names
|
| 369 |
+
text_column_name = "text" if "text" in column_names else column_names[0]
|
| 370 |
+
|
| 371 |
+
if data_args.max_seq_length is None:
|
| 372 |
+
max_seq_length = tokenizer.model_max_length
|
| 373 |
+
if max_seq_length > 1024:
|
| 374 |
+
logger.warning(
|
| 375 |
+
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
|
| 376 |
+
"Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
|
| 377 |
+
)
|
| 378 |
+
max_seq_length = 1024
|
| 379 |
+
else:
|
| 380 |
+
if data_args.max_seq_length > tokenizer.model_max_length:
|
| 381 |
+
logger.warning(
|
| 382 |
+
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
|
| 383 |
+
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
|
| 384 |
+
)
|
| 385 |
+
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
|
| 386 |
+
|
| 387 |
+
if data_args.line_by_line:
|
| 388 |
+
# When using line_by_line, we just tokenize each nonempty line.
|
| 389 |
+
padding = "max_length" if data_args.pad_to_max_length else False
|
| 390 |
+
|
| 391 |
+
def tokenize_function(examples):
|
| 392 |
+
# Remove empty lines
|
| 393 |
+
examples[text_column_name] = [
|
| 394 |
+
line for line in examples[text_column_name] if len(line) > 0 and not line.isspace()
|
| 395 |
+
]
|
| 396 |
+
return tokenizer(
|
| 397 |
+
examples[text_column_name],
|
| 398 |
+
padding=padding,
|
| 399 |
+
truncation=True,
|
| 400 |
+
max_length=max_seq_length,
|
| 401 |
+
# We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it
|
| 402 |
+
# receives the `special_tokens_mask`.
|
| 403 |
+
return_special_tokens_mask=True,
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
with training_args.main_process_first(desc="dataset map tokenization"):
|
| 407 |
+
tokenized_datasets = raw_datasets.map(
|
| 408 |
+
tokenize_function,
|
| 409 |
+
batched=True,
|
| 410 |
+
num_proc=data_args.preprocessing_num_workers,
|
| 411 |
+
remove_columns=[text_column_name],
|
| 412 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
| 413 |
+
desc="Running tokenizer on dataset line_by_line",
|
| 414 |
+
)
|
| 415 |
+
else:
|
| 416 |
+
# Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
|
| 417 |
+
# We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
|
| 418 |
+
# efficient when it receives the `special_tokens_mask`.
|
| 419 |
+
def tokenize_function(examples):
|
| 420 |
+
return tokenizer(examples[text_column_name], return_special_tokens_mask=True)
|
| 421 |
+
|
| 422 |
+
with training_args.main_process_first(desc="dataset map tokenization"):
|
| 423 |
+
tokenized_datasets = raw_datasets.map(
|
| 424 |
+
tokenize_function,
|
| 425 |
+
batched=True,
|
| 426 |
+
num_proc=data_args.preprocessing_num_workers,
|
| 427 |
+
remove_columns=column_names,
|
| 428 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
| 429 |
+
desc="Running tokenizer on every text in dataset",
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
# Main data processing function that will concatenate all texts from our dataset and generate chunks of
|
| 433 |
+
# max_seq_length.
|
| 434 |
+
def group_texts(examples):
|
| 435 |
+
# Concatenate all texts.
|
| 436 |
+
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
|
| 437 |
+
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
| 438 |
+
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
|
| 439 |
+
# customize this part to your needs.
|
| 440 |
+
if total_length >= max_seq_length:
|
| 441 |
+
total_length = (total_length // max_seq_length) * max_seq_length
|
| 442 |
+
# Split by chunks of max_len.
|
| 443 |
+
result = {
|
| 444 |
+
k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
|
| 445 |
+
for k, t in concatenated_examples.items()
|
| 446 |
+
}
|
| 447 |
+
return result
|
| 448 |
+
|
| 449 |
+
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
|
| 450 |
+
# remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
|
| 451 |
+
# might be slower to preprocess.
|
| 452 |
+
#
|
| 453 |
+
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
|
| 454 |
+
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
|
| 455 |
+
|
| 456 |
+
with training_args.main_process_first(desc="grouping texts together"):
|
| 457 |
+
tokenized_datasets = tokenized_datasets.map(
|
| 458 |
+
group_texts,
|
| 459 |
+
batched=True,
|
| 460 |
+
num_proc=data_args.preprocessing_num_workers,
|
| 461 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
| 462 |
+
desc=f"Grouping texts in chunks of {max_seq_length}",
|
| 463 |
+
)
|
| 464 |
+
|
| 465 |
+
if training_args.do_train:
|
| 466 |
+
if "train" not in tokenized_datasets:
|
| 467 |
+
raise ValueError("--do_train requires a train dataset")
|
| 468 |
+
train_dataset = tokenized_datasets["train"]
|
| 469 |
+
if data_args.max_train_samples is not None:
|
| 470 |
+
train_dataset = train_dataset.select(range(data_args.max_train_samples))
|
| 471 |
+
|
| 472 |
+
if training_args.do_eval:
|
| 473 |
+
if "validation" not in tokenized_datasets:
|
| 474 |
+
raise ValueError("--do_eval requires a validation dataset")
|
| 475 |
+
eval_dataset = tokenized_datasets["validation"]
|
| 476 |
+
if data_args.max_eval_samples is not None:
|
| 477 |
+
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
|
| 478 |
+
|
| 479 |
+
# Data collator
|
| 480 |
+
# This one will take care of randomly masking the tokens.
|
| 481 |
+
pad_to_multiple_of_8 = data_args.line_by_line and training_args.fp16 and not data_args.pad_to_max_length
|
| 482 |
+
data_collator = DataCollatorForLanguageModeling(
|
| 483 |
+
tokenizer=tokenizer,
|
| 484 |
+
mlm_probability=data_args.mlm_probability,
|
| 485 |
+
pad_to_multiple_of=8 if pad_to_multiple_of_8 else None,
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
+
# Initialize our Trainer
|
| 489 |
+
trainer = Trainer(
|
| 490 |
+
model=model,
|
| 491 |
+
args=training_args,
|
| 492 |
+
train_dataset=train_dataset if training_args.do_train else None,
|
| 493 |
+
eval_dataset=eval_dataset if training_args.do_eval else None,
|
| 494 |
+
tokenizer=tokenizer,
|
| 495 |
+
data_collator=data_collator,
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
# Training
|
| 499 |
+
if training_args.do_train:
|
| 500 |
+
checkpoint = None
|
| 501 |
+
if training_args.resume_from_checkpoint is not None:
|
| 502 |
+
checkpoint = training_args.resume_from_checkpoint
|
| 503 |
+
elif last_checkpoint is not None:
|
| 504 |
+
checkpoint = last_checkpoint
|
| 505 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
| 506 |
+
trainer.save_model() # Saves the tokenizer too for easy upload
|
| 507 |
+
metrics = train_result.metrics
|
| 508 |
+
|
| 509 |
+
max_train_samples = (
|
| 510 |
+
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
|
| 511 |
+
)
|
| 512 |
+
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
|
| 513 |
+
|
| 514 |
+
trainer.log_metrics("train", metrics)
|
| 515 |
+
trainer.save_metrics("train", metrics)
|
| 516 |
+
trainer.save_state()
|
| 517 |
+
|
| 518 |
+
# Evaluation
|
| 519 |
+
if training_args.do_eval:
|
| 520 |
+
logger.info("*** Evaluate ***")
|
| 521 |
+
|
| 522 |
+
metrics = trainer.evaluate()
|
| 523 |
+
|
| 524 |
+
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
|
| 525 |
+
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
|
| 526 |
+
try:
|
| 527 |
+
perplexity = math.exp(metrics["eval_loss"])
|
| 528 |
+
except OverflowError:
|
| 529 |
+
perplexity = float("inf")
|
| 530 |
+
metrics["perplexity"] = perplexity
|
| 531 |
+
|
| 532 |
+
trainer.log_metrics("eval", metrics)
|
| 533 |
+
trainer.save_metrics("eval", metrics)
|
| 534 |
+
|
| 535 |
+
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "fill-mask"}
|
| 536 |
+
if data_args.dataset_name is not None:
|
| 537 |
+
kwargs["dataset_tags"] = data_args.dataset_name
|
| 538 |
+
if data_args.dataset_config_name is not None:
|
| 539 |
+
kwargs["dataset_args"] = data_args.dataset_config_name
|
| 540 |
+
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
|
| 541 |
+
else:
|
| 542 |
+
kwargs["dataset"] = data_args.dataset_name
|
| 543 |
+
|
| 544 |
+
if training_args.push_to_hub:
|
| 545 |
+
trainer.push_to_hub(**kwargs)
|
| 546 |
+
else:
|
| 547 |
+
trainer.create_model_card(**kwargs)
|
| 548 |
+
|
| 549 |
+
|
| 550 |
+
def _mp_fn(index):
|
| 551 |
+
# For xla_spawn (TPUs)
|
| 552 |
+
main()
|
| 553 |
+
|
| 554 |
+
|
| 555 |
+
if __name__ == "__main__":
|
| 556 |
+
main()
|
xla_spawn.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
"""
|
| 15 |
+
A simple launcher script for TPU training
|
| 16 |
+
|
| 17 |
+
Inspired by https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py
|
| 18 |
+
|
| 19 |
+
::
|
| 20 |
+
>>> python xla_spawn.py --num_cores=NUM_CORES_YOU_HAVE
|
| 21 |
+
YOUR_TRAINING_SCRIPT.py (--arg1 --arg2 --arg3 and all other
|
| 22 |
+
arguments of your training script)
|
| 23 |
+
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
import importlib
|
| 28 |
+
import sys
|
| 29 |
+
from argparse import REMAINDER, ArgumentParser
|
| 30 |
+
from pathlib import Path
|
| 31 |
+
|
| 32 |
+
import torch_xla.distributed.xla_multiprocessing as xmp
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def parse_args():
|
| 36 |
+
"""
|
| 37 |
+
Helper function parsing the command line options
|
| 38 |
+
@retval ArgumentParser
|
| 39 |
+
"""
|
| 40 |
+
parser = ArgumentParser(
|
| 41 |
+
description=(
|
| 42 |
+
"PyTorch TPU distributed training launch "
|
| 43 |
+
"helper utility that will spawn up "
|
| 44 |
+
"multiple distributed processes"
|
| 45 |
+
)
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# Optional arguments for the launch helper
|
| 49 |
+
parser.add_argument("--num_cores", type=int, default=1, help="Number of TPU cores to use (1 or 8).")
|
| 50 |
+
|
| 51 |
+
# positional
|
| 52 |
+
parser.add_argument(
|
| 53 |
+
"training_script",
|
| 54 |
+
type=str,
|
| 55 |
+
help=(
|
| 56 |
+
"The full path to the single TPU training "
|
| 57 |
+
"program/script to be launched in parallel, "
|
| 58 |
+
"followed by all the arguments for the "
|
| 59 |
+
"training script"
|
| 60 |
+
),
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# rest from the training program
|
| 64 |
+
parser.add_argument("training_script_args", nargs=REMAINDER)
|
| 65 |
+
|
| 66 |
+
return parser.parse_args()
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def main():
|
| 70 |
+
args = parse_args()
|
| 71 |
+
|
| 72 |
+
# Import training_script as a module.
|
| 73 |
+
script_fpath = Path(args.training_script)
|
| 74 |
+
sys.path.append(str(script_fpath.parent.resolve()))
|
| 75 |
+
mod_name = script_fpath.stem
|
| 76 |
+
mod = importlib.import_module(mod_name)
|
| 77 |
+
|
| 78 |
+
# Patch sys.argv
|
| 79 |
+
sys.argv = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores)]
|
| 80 |
+
|
| 81 |
+
xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
if __name__ == "__main__":
|
| 85 |
+
main()
|