Add files using upload-large-folder tool
Browse files- ckpt/final.ckpt +3 -0
- config.json +12 -0
- configuration_bigcodec.py +19 -0
- model.safetensors +3 -0
- modeling_xcodec2.py +165 -0
ckpt/final.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57cabb38fafa6f376df8bc6c159425a8a3212363eb3d16ea56975119e8a4b510
|
3 |
+
size 6450664823
|
config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"XCodec2Model"
|
4 |
+
],
|
5 |
+
"codec_decoder_hidden_size": 1024,
|
6 |
+
"codec_encoder_hidden_size": 1024,
|
7 |
+
"model_type": "xcodec2",
|
8 |
+
"semantic_hidden_size": 1024,
|
9 |
+
"torch_dtype": "float32",
|
10 |
+
"transformers_version": "4.48.0",
|
11 |
+
"use_vocos": true
|
12 |
+
}
|
configuration_bigcodec.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class BigCodecConfig(PretrainedConfig):
|
4 |
+
model_type = "bigcodec"
|
5 |
+
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
# 下面这些只是示例超参
|
9 |
+
semantic_hidden_size=1024,
|
10 |
+
codec_encoder_hidden_size=1024,
|
11 |
+
codec_decoder_hidden_size=1024,
|
12 |
+
use_vocos=True,
|
13 |
+
**kwargs
|
14 |
+
):
|
15 |
+
super().__init__(**kwargs)
|
16 |
+
self.semantic_hidden_size = semantic_hidden_size
|
17 |
+
self.codec_encoder_hidden_size = codec_encoder_hidden_size
|
18 |
+
self.codec_decoder_hidden_size = codec_decoder_hidden_size
|
19 |
+
self.use_vocos = use_vocos
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7fb997858dbb0e866a10db7f4b31d4e4006a0cb12188311459b34d7b9094253
|
3 |
+
size 3291106408
|
modeling_xcodec2.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import PreTrainedModel
|
4 |
+
from configuration_bigcodec import BigCodecConfig
|
5 |
+
|
6 |
+
# 请确保这些模块路径是正确的
|
7 |
+
from vq.codec_encoder import CodecEncoder_Transformer
|
8 |
+
from vq.codec_decoder_vocos import CodecDecoderVocos
|
9 |
+
from vq.module import SemanticEncoder
|
10 |
+
from transformers import AutoFeatureExtractor, Wav2Vec2BertModel
|
11 |
+
|
12 |
+
class XCodec2Model(PreTrainedModel):
|
13 |
+
config_class = BigCodecConfig
|
14 |
+
|
15 |
+
def __init__(self, config: BigCodecConfig):
|
16 |
+
super().__init__(config)
|
17 |
+
|
18 |
+
# 1) 语义模型
|
19 |
+
self.semantic_model = Wav2Vec2BertModel.from_pretrained(
|
20 |
+
"facebook/w2v-bert-2.0",
|
21 |
+
output_hidden_states=True
|
22 |
+
)
|
23 |
+
self.semantic_model.eval()
|
24 |
+
|
25 |
+
self.SemanticEncoder_module = SemanticEncoder(
|
26 |
+
config.semantic_hidden_size,
|
27 |
+
config.semantic_hidden_size,
|
28 |
+
config.semantic_hidden_size
|
29 |
+
)
|
30 |
+
|
31 |
+
# 2) Codec Encoder
|
32 |
+
self.CodecEnc = CodecEncoder_Transformer()
|
33 |
+
|
34 |
+
# 3) Codec Decoder
|
35 |
+
self.generator = CodecDecoderVocos()
|
36 |
+
|
37 |
+
# 4) 两个全连接层
|
38 |
+
self.fc_prior = nn.Linear(2048, 2048)
|
39 |
+
self.fc_post_a = nn.Linear(2048, 1024)
|
40 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0")
|
41 |
+
self.feature_extractor = feature_extractor
|
42 |
+
|
43 |
+
def forward(self, input_waveform, sample_rate=16000):
|
44 |
+
"""
|
45 |
+
这里的 forward 不一定要叫 forward,也可以拆成别的方法;
|
46 |
+
但是如果想兼容 pipeline,需要在 forward 里给出核心逻辑。
|
47 |
+
|
48 |
+
参数:
|
49 |
+
input_waveform: [batch_size, waveform_length]
|
50 |
+
sample_rate: 默认 16000
|
51 |
+
返回:
|
52 |
+
重构后的语音音频 (Tensor)
|
53 |
+
"""
|
54 |
+
# 1) 特征提取
|
55 |
+
# 如果需要 padding,可以在这里做
|
56 |
+
input_features = self.feature_extractor(
|
57 |
+
input_waveform,
|
58 |
+
sampling_rate=sample_rate,
|
59 |
+
return_tensors="pt"
|
60 |
+
).input_features.to(self.device) # [batch, frames, feat_dim]
|
61 |
+
|
62 |
+
# 2) 语义层
|
63 |
+
semantic_output = self.semantic_model(input_features)
|
64 |
+
semantic_hidden_16 = semantic_output.hidden_states[16] # 取第16层
|
65 |
+
semantic_hidden_16 = semantic_hidden_16.transpose(1, 2) # [batch, hidden_dim, frames]
|
66 |
+
semantic_encoded = self.SemanticEncoder_module(semantic_hidden_16)
|
67 |
+
|
68 |
+
# 3) codec encoder
|
69 |
+
wav = input_waveform.unsqueeze(1).to(self.device) # shape: [batch, 1, time]
|
70 |
+
vq_emb = self.CodecEnc(wav) # [batch, time//down, 1024] 只是示例
|
71 |
+
vq_emb = vq_emb.transpose(1, 2) # -> [batch, 1024, frames]
|
72 |
+
|
73 |
+
# 对齐语义向量的时间帧数,这里只做示例处理
|
74 |
+
# 真实做法里可能要先对齐维度
|
75 |
+
if vq_emb.shape[-1] != semantic_encoded.shape[-1]:
|
76 |
+
# 简单强行截断或补零都行,需要你自己决定
|
77 |
+
min_len = min(vq_emb.shape[-1], semantic_encoded.shape[-1])
|
78 |
+
vq_emb = vq_emb[:, :, :min_len]
|
79 |
+
semantic_encoded = semantic_encoded[:, :, :min_len]
|
80 |
+
|
81 |
+
# 4) 拼接
|
82 |
+
concat_emb = torch.cat([semantic_encoded, vq_emb], dim=1) # [batch, 1024 + 1024, frames]
|
83 |
+
|
84 |
+
# 5) fc_prior
|
85 |
+
concat_emb = self.fc_prior(concat_emb.transpose(1, 2)).transpose(1, 2)
|
86 |
+
|
87 |
+
# 6) decoder 的量化部分
|
88 |
+
_, vq_code, _ = self.generator(concat_emb, vq=True)
|
89 |
+
vq_post_emb = self.generator.quantizer.get_output_from_indices(vq_code.transpose(1, 2))
|
90 |
+
vq_post_emb = vq_post_emb.transpose(1, 2)
|
91 |
+
|
92 |
+
# 7) fc_post_a
|
93 |
+
vq_post_emb = self.fc_post_a(vq_post_emb.transpose(1, 2)).transpose(1, 2)
|
94 |
+
|
95 |
+
# 8) 最后解码成波形
|
96 |
+
recon_audio = self.generator(vq_post_emb.transpose(1, 2), vq=False)[0]
|
97 |
+
# recon_audio: [batch, time]
|
98 |
+
return recon_audio
|
99 |
+
|
100 |
+
def encode_code(self, input_waveform, sample_rate=16000):
|
101 |
+
"""
|
102 |
+
将输入的音频编码为代码表示。
|
103 |
+
|
104 |
+
参数:
|
105 |
+
input_waveform: [batch_size, waveform_length]
|
106 |
+
sample_rate: 默认 16000
|
107 |
+
返回:
|
108 |
+
编码后的代码 (Tensor)
|
109 |
+
"""
|
110 |
+
with torch.no_grad():
|
111 |
+
# 1) 特征提取
|
112 |
+
input_features = self.feature_extractor(
|
113 |
+
input_waveform,
|
114 |
+
sampling_rate=sample_rate,
|
115 |
+
return_tensors="pt"
|
116 |
+
).input_features.to(self.device) # [batch, frames, feat_dim]
|
117 |
+
|
118 |
+
# 2) 语义层
|
119 |
+
semantic_output = self.semantic_model(input_features)
|
120 |
+
semantic_hidden_16 = semantic_output.hidden_states[16] # 取第16层
|
121 |
+
semantic_hidden_16 = semantic_hidden_16.transpose(1, 2) # [batch, hidden_dim, frames]
|
122 |
+
semantic_encoded = self.SemanticEncoder_module(semantic_hidden_16)
|
123 |
+
|
124 |
+
# 3) codec encoder
|
125 |
+
wav = input_waveform.unsqueeze(1).to(self.device) # shape: [batch, 1, time]
|
126 |
+
vq_emb = self.CodecEnc(wav) # [batch, time//down, 1024] 只是示例
|
127 |
+
vq_emb = vq_emb.transpose(1, 2) # -> [batch, 1024, frames]
|
128 |
+
|
129 |
+
# 对齐语义向量的时间帧数,这里只做示例处理
|
130 |
+
if vq_emb.shape[-1] != semantic_encoded.shape[-1]:
|
131 |
+
min_len = min(vq_emb.shape[-1], semantic_encoded.shape[-1])
|
132 |
+
vq_emb = vq_emb[:, :, :min_len]
|
133 |
+
semantic_encoded = semantic_encoded[:, :, :min_len]
|
134 |
+
|
135 |
+
# 4) 拼接
|
136 |
+
concat_emb = torch.cat([semantic_encoded, vq_emb], dim=1) # [batch, 2048, frames]
|
137 |
+
|
138 |
+
# 5) fc_prior
|
139 |
+
concat_emb = self.fc_prior(concat_emb.transpose(1, 2)).transpose(1, 2)
|
140 |
+
|
141 |
+
# 6) decoder 的量化部分,获取code
|
142 |
+
_, vq_code, _ = self.generator(concat_emb, vq=True)
|
143 |
+
# vq_code: [batch, frames]
|
144 |
+
return vq_code
|
145 |
+
|
146 |
+
def decode_code(self, vq_code):
|
147 |
+
"""
|
148 |
+
将编码后的代码解码回音频。
|
149 |
+
|
150 |
+
参数:
|
151 |
+
vq_code: 编码后的代码 (Tensor) [batch, frames]
|
152 |
+
返回:
|
153 |
+
解码后的音频 (Tensor) [batch, waveform_length]
|
154 |
+
"""
|
155 |
+
with torch.no_grad():
|
156 |
+
# 获取量化后的嵌入
|
157 |
+
vq_post_emb = self.generator.quantizer.get_output_from_indices(vq_code.transpose(1, 2))
|
158 |
+
vq_post_emb = vq_post_emb.transpose(1, 2) # [batch, 1024, frames]
|
159 |
+
|
160 |
+
# 7) fc_post_a
|
161 |
+
vq_post_emb = self.fc_post_a(vq_post_emb.transpose(1, 2)).transpose(1, 2) # [batch, 1024, frames]
|
162 |
+
|
163 |
+
# 8) 最后解码成波形
|
164 |
+
recon_audio = self.generator(vq_post_emb.transpose(1, 2), vq=False)[0] # [batch, time]
|
165 |
+
return recon_audio
|