Naela00 commited on
Commit
2419007
Β·
1 Parent(s): 7363dd0

Changing the notation

Browse files
This view is limited to 50 files because it contains too many changes. Β  See raw diff
Files changed (50) hide show
  1. README.md +90 -16
  2. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/README.md +0 -0
  3. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/adapter_config.json +0 -0
  4. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/adapter_model.safetensors +0 -0
  5. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/added_tokens.json +0 -0
  6. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/chat_template.jinja +0 -0
  7. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/global_step417/mp_rank_00_model_states.pt +0 -0
  8. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/global_step417/zero_pp_rank_0_mp_rank_00_optim_states.pt +0 -0
  9. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/global_step417/zero_pp_rank_1_mp_rank_00_optim_states.pt +0 -0
  10. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/latest +0 -0
  11. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/merges.txt +0 -0
  12. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/rng_state_0.pth +0 -0
  13. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/rng_state_1.pth +0 -0
  14. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/special_tokens_map.json +0 -0
  15. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/tokenizer.json +0 -0
  16. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/tokenizer_config.json +0 -0
  17. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/trainer_state.json +0 -0
  18. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/training_args.bin +0 -0
  19. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/vocab.json +0 -0
  20. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/README.md +0 -0
  21. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/adapter_config.json +0 -0
  22. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/adapter_model.safetensors +0 -0
  23. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/added_tokens.json +0 -0
  24. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/chat_template.jinja +0 -0
  25. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/global_step537/mp_rank_00_model_states.pt +0 -0
  26. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/global_step537/zero_pp_rank_0_mp_rank_00_optim_states.pt +0 -0
  27. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/global_step537/zero_pp_rank_1_mp_rank_00_optim_states.pt +0 -0
  28. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/latest +0 -0
  29. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/merges.txt +0 -0
  30. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/rng_state_0.pth +0 -0
  31. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/rng_state_1.pth +0 -0
  32. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/special_tokens_map.json +0 -0
  33. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/tokenizer.json +0 -0
  34. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/tokenizer_config.json +0 -0
  35. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/trainer_state.json +0 -0
  36. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/training_args.bin +0 -0
  37. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/vocab.json +0 -0
  38. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/README.md +0 -0
  39. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/adapter_config.json +0 -0
  40. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/adapter_model.safetensors +0 -0
  41. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/added_tokens.json +0 -0
  42. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/chat_template.jinja +0 -0
  43. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/global_step544/mp_rank_00_model_states.pt +0 -0
  44. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/global_step544/zero_pp_rank_0_mp_rank_00_optim_states.pt +0 -0
  45. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/global_step544/zero_pp_rank_1_mp_rank_00_optim_states.pt +0 -0
  46. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/latest +0 -0
  47. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/merges.txt +0 -0
  48. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/rng_state_0.pth +0 -0
  49. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/rng_state_1.pth +0 -0
  50. {output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/special_tokens_map.json +0 -0
README.md CHANGED
@@ -20,7 +20,6 @@ datasets:
20
  base_model:
21
  - Qwen/Qwen3-4B
22
  ---
23
-
24
  # ToxiFrench: Benchmarking and Investigating SLMs and CoT Finetuning for French Toxicity Detection
25
 
26
  <!-- Badges/Tags -->
@@ -42,6 +41,15 @@ base_model:
42
 
43
  ---
44
 
 
 
 
 
 
 
 
 
 
45
  ## Abstract
46
 
47
  Despite significant progress in English toxicity detection, performance drastically degrades in other languages like French, a gap stemming from disparities in training corpora and the culturally nuanced nature of toxicity. This paper addresses this critical gap with three key contributions. First, we introduce ToxiFrench, a new public benchmark dataset for French toxicity detection, comprising 53,622 entries. This dataset was constructed using a novel annotation strategy that required manual labeling for only 10% of the data, minimizing effort and error. Second, we conducted a comprehensive evaluation of toxicity detection models. Our findings reveal that while Large Language Models (LLMs) often achieve high performance, Small Language Models (SLMs) can demonstrate greater robustness to bias, better cross-language consistency, and superior generalization to novel forms of toxicity. Third, to identify optimal transfer-learning methods, we conducted a systematic comparison of In-Context Learning (ICL), Supervised Fine-tuning (SFT), and Chain-of-Thought (CoT) reasoning using `Qwen3-4B` and analyzed the impact of data imbalance. We propose a novel approach for CoT fine-tuning that employs a dynamic weighted loss function, significantly boosting performance by ensuring the model's reasoning is faithful to its final conclusion.
@@ -58,26 +66,85 @@ Despite significant progress in English toxicity detection, performance drastica
58
 
59
  ---
60
 
61
- ## Models overview
62
 
63
  This repository contains the **ToxiFrench** model, a **French language model** fine-tuned for **toxic comment classification**. It is based on the [**Qwen/Qwen3-4B**](https://huggingface.co/Qwen/Qwen3-4B) architecture and is designed to detect and classify toxic comments in French text.
64
 
65
  We performed a series of experiments to evaluate the model's performance under different fine-tuning configurations, focusing on the impact of **data selection strategies** and **Chain-of-Thought (CoT)** annotations.
66
 
67
- ## Finetuning notations
68
-
69
- Each experiment follows a naming scheme like: **(r/o)(e/d)(a/b)(s/m/l)**
70
- Where:
71
-
72
- - `r` = random order, `o` = ordered (curriculum)
73
- - `e` = equal toxic/non-toxic, `d` = real-world imbalance
74
- - `a` = with CoT finetuning, `b` = without CoT
75
- - `s` = small (100), `m` = medium (1000), `l` = large (all)
76
-
77
- > e.g. `rdal` is the model trained on the natural distribution of toxicity (`d`), on an arbitrary order (`r`), with CoT annotations (`a`), and on the whole dataset (`l`).
78
-
79
- If a label like `<cot-step>` is present in the checkpoint name, it indicates that the CoT that was used during training did not include this specific reasoning step.
80
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
 
82
  ---
83
 
@@ -91,6 +158,13 @@ This project is licensed under the MIT License - see the [LICENSE](LICENSE) file
91
 
92
  If you use this project in your research, please cite it as follows:
93
 
 
 
 
 
 
 
 
94
  ```bibtex
95
  @misc{delaval2025toxifrench,
96
  title={ToxiFrench: Benchmarking and Investigating SLMs and CoT Finetuning for French Toxicity Detection},
 
20
  base_model:
21
  - Qwen/Qwen3-4B
22
  ---
 
23
  # ToxiFrench: Benchmarking and Investigating SLMs and CoT Finetuning for French Toxicity Detection
24
 
25
  <!-- Badges/Tags -->
 
41
 
42
  ---
43
 
44
+ ## Table of Contents
45
+ - [Abstract](#abstract)
46
+ - [Key Contributions](#key-contributions)
47
+ - [How to use ?](#how-to-use)
48
+ - [Notations](#notations)
49
+ - [Example Usage](#example-usage)
50
+ - [License](#license)
51
+ - [Citation](#citation)
52
+
53
  ## Abstract
54
 
55
  Despite significant progress in English toxicity detection, performance drastically degrades in other languages like French, a gap stemming from disparities in training corpora and the culturally nuanced nature of toxicity. This paper addresses this critical gap with three key contributions. First, we introduce ToxiFrench, a new public benchmark dataset for French toxicity detection, comprising 53,622 entries. This dataset was constructed using a novel annotation strategy that required manual labeling for only 10% of the data, minimizing effort and error. Second, we conducted a comprehensive evaluation of toxicity detection models. Our findings reveal that while Large Language Models (LLMs) often achieve high performance, Small Language Models (SLMs) can demonstrate greater robustness to bias, better cross-language consistency, and superior generalization to novel forms of toxicity. Third, to identify optimal transfer-learning methods, we conducted a systematic comparison of In-Context Learning (ICL), Supervised Fine-tuning (SFT), and Chain-of-Thought (CoT) reasoning using `Qwen3-4B` and analyzed the impact of data imbalance. We propose a novel approach for CoT fine-tuning that employs a dynamic weighted loss function, significantly boosting performance by ensuring the model's reasoning is faithful to its final conclusion.
 
66
 
67
  ---
68
 
69
+ ## How to use ?
70
 
71
  This repository contains the **ToxiFrench** model, a **French language model** fine-tuned for **toxic comment classification**. It is based on the [**Qwen/Qwen3-4B**](https://huggingface.co/Qwen/Qwen3-4B) architecture and is designed to detect and classify toxic comments in French text.
72
 
73
  We performed a series of experiments to evaluate the model's performance under different fine-tuning configurations, focusing on the impact of **data selection strategies** and **Chain-of-Thought (CoT)** annotations.
74
 
75
+ We used QLORA adapters, make sure to specify `adapter_name` when loading the model, otherwise the base model, without any fine-tuning, will be loaded.
76
+
77
+ ### Notations
78
+
79
+ For conciseness, we use a three-letter notation to describe the different configurations of the fine-tuning experiments. Each experiment follows a naming scheme like: **(<strong style="color: #d9534f;">r</strong>/<strong style="color: #428bca;">o</strong>)(<strong style="color: #d9534f;">e</strong>/<strong style="color: #428bca;">d</strong>)(<strong style="color: #d9534f;">c</strong>/<strong style="color: #428bca;">b</strong>)**
80
+ Where:
81
+
82
+ <table style="width:100%; border-collapse: collapse;">
83
+ <thead>
84
+ <tr>
85
+ <th style="text-align:left; padding: 8px; border-bottom: 2px solid black;">Parameter</th>
86
+ <th style="text-align:left; padding: 8px; border-bottom: 2px solid black;">Code</th>
87
+ <th style="text-align:left; padding: 8px; border-bottom: 2px solid black;">Description</th>
88
+ </tr>
89
+ </thead>
90
+ <tbody>
91
+ <tr>
92
+ <td rowspan="2" style="padding: 8px; border-bottom: 1px solid #ddd;"><strong>Data Order</strong></td>
93
+ <td style="padding: 8px; color: #d9534f;">[r]</td>
94
+ <td style="padding: 8px;">Training data is presented in a <strong style="color: #d9534f;">random</strong> order.</td>
95
+ </tr>
96
+ <tr>
97
+ <td style="padding: 8px; border-bottom: 1px solid #ddd; color: #428bca;">[o]</td>
98
+ <td style="padding: 8px; border-bottom: 1px solid #ddd;">Data is <strong style="color: #428bca;">ordered</strong> (Curriculum Learning).</td>
99
+ </tr>
100
+ <tr>
101
+ <td rowspan="2" style="padding: 8px; border-bottom: 1px solid #ddd;"><strong>Class Balance</strong></td>
102
+ <td style="padding: 8px; color: #d9534f;">[e]</td>
103
+ <td style="padding: 8px;">Training set has an <strong style="color: #d9534f;">equal</strong> (balanced) number of toxic and non-toxic samples.</td>
104
+ </tr>
105
+ <tr>
106
+ <td style="padding: 8px; border-bottom: 1px solid #ddd; color: #428bca;">[d]</td>
107
+ <td style="padding: 8px; border-bottom: 1px solid #ddd;">Training set uses a <strong style="color: #428bca;">different</strong> (imbalanced) class distribution.</td>
108
+ </tr>
109
+ <tr>
110
+ <td rowspan="2" style="padding: 8px;"><strong>Training Target</strong></td>
111
+ <td style="padding: 8px; color: #d9534f;">[c]</td>
112
+ <td style="padding: 8px;">Finetuning on the complete <strong style="color: #d9534f;">Chain-of-Thought</strong> annotation.</td>
113
+ </tr>
114
+ <tr>
115
+ <td style="padding: 8px; color: #428bca;">[b]</td>
116
+ <td style="padding: 8px;">Finetuning on the final <strong style="color: #428bca;">binary</strong> label only (direct classification).</td>
117
+ </tr>
118
+ </tbody>
119
+ </table>
120
+
121
+ > e.g. `rec` is the model trained on an oversampled dataset for balance, with batches in an arbitrary order (`r`), and with CoT reasoning (`c`).
122
+
123
+ ### Example Usage
124
+
125
+ ```python
126
+ import torch
127
+ from transformers import AutoModelForCausalLM, AutoTokenizer
128
+ from peft import PeftModel
129
+
130
+ # Choose which adapter to load
131
+ target_adapter_name = "rec" # Among the following six configurations : "odc", "oeb", "oec", "rdc", "reb", "rec"
132
+
133
+ # Load the base model
134
+ base_model_name = "Qwen/Qwen3-4B"
135
+ model = AutoModelForCausalLM.from_pretrained(base_model_name, device_map="auto")
136
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name)
137
+
138
+ # Load the specific adapter by name from the repository
139
+ adapter_repo_id = "Naela00/ToxiFrench"
140
+ model = PeftModel.from_pretrained(
141
+ model,
142
+ adapter_repo_id,
143
+ adapter_name=target_adapter_name # Precise which experiment to load
144
+ )
145
+
146
+ print(f"Successfully loaded the '{target_adapter_name}' adapter!")
147
+ ```
148
 
149
  ---
150
 
 
158
 
159
  If you use this project in your research, please cite it as follows:
160
 
161
+ ```bibtex
162
+ @misc{delaval2025toxifrench,
163
+ title={ToxiFrench: Benchmarking and Investigating SLMs and CoT Finetuning for French Toxicity Detection},
164
+ author={Axel Delaval},
165
+ year={2025},
166
+ If you use this project in your research, please cite it as follows:
167
+
168
  ```bibtex
169
  @misc{delaval2025toxifrench,
170
  title={ToxiFrench: Benchmarking and Investigating SLMs and CoT Finetuning for French Toxicity Detection},
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/README.md RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/adapter_config.json RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/adapter_model.safetensors RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/added_tokens.json RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/chat_template.jinja RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/global_step417/mp_rank_00_model_states.pt RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/global_step417/zero_pp_rank_0_mp_rank_00_optim_states.pt RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/global_step417/zero_pp_rank_1_mp_rank_00_optim_states.pt RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/latest RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/merges.txt RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/rng_state_0.pth RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/rng_state_1.pth RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/special_tokens_map.json RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/tokenizer.json RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/tokenizer_config.json RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/trainer_state.json RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/training_args.bin RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-420/vocab.json RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/README.md RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/adapter_config.json RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/adapter_model.safetensors RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/added_tokens.json RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/chat_template.jinja RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/global_step537/mp_rank_00_model_states.pt RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/global_step537/zero_pp_rank_0_mp_rank_00_optim_states.pt RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/global_step537/zero_pp_rank_1_mp_rank_00_optim_states.pt RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/latest RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/merges.txt RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/rng_state_0.pth RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/rng_state_1.pth RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/special_tokens_map.json RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/tokenizer.json RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/tokenizer_config.json RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/trainer_state.json RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/training_args.bin RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-540/vocab.json RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/README.md RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/adapter_config.json RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/adapter_model.safetensors RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/added_tokens.json RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/chat_template.jinja RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/global_step544/mp_rank_00_model_states.pt RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/global_step544/zero_pp_rank_0_mp_rank_00_optim_states.pt RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/global_step544/zero_pp_rank_1_mp_rank_00_optim_states.pt RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/latest RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/merges.txt RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/rng_state_0.pth RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/rng_state_1.pth RENAMED
File without changes
{output_odal_Qwen3-4B_<cot_intention>-<cot_categorie_list> β†’ checkpoints/odc_Qwen3-4B}/checkpoint-548/special_tokens_map.json RENAMED
File without changes