upload model
Browse files- README.md +87 -0
- README_zh-CN.md +82 -0
- added_tokens.json +5 -0
- config.json +29 -0
- generation_config.json +10 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- special_tokens_map.json +20 -0
- tokenizer.json +0 -0
- tokenizer_config.json +43 -0
- vocab.json +0 -0
README.md
CHANGED
@@ -1,3 +1,90 @@
|
|
1 |
---
|
2 |
license: gpl-3.0
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: gpl-3.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
---
|
6 |
+
# NanoLM-1B-Instruct-v2
|
7 |
+
|
8 |
+
|
9 |
+
English | [简体中文](README_zh-CN.md)
|
10 |
+
|
11 |
+
|
12 |
+
## Introduction
|
13 |
+
|
14 |
+
In order to explore the potential of small models, I have attempted to build a series of them, which are available in the [NanoLM Collections](https://huggingface.co/collections/Mxode/nanolm-66d6d75b4a69536bca2705b2).
|
15 |
+
|
16 |
+
This is NanoLM-1B-Instruct-v2. The model currently supports **English only**.
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
## Model Details
|
21 |
+
|
22 |
+
| Nano LMs | Non-emb Params | Arch | Layers | Dim | Heads | Seq Len |
|
23 |
+
| :----------: | :------------------: | :---: | :----: | :-------: | :---: | :---: |
|
24 |
+
| 25M | 15M | MistralForCausalLM | 12 | 312 | 12 | 2K |
|
25 |
+
| 70M | 42M | LlamaForCausalLM | 12 | 576 | 9 |2K|
|
26 |
+
| 0.3B | 180M | Qwen2ForCausalLM | 12 | 896 | 14 |4K|
|
27 |
+
| **1B** | **840M** | **Qwen2ForCausalLM** | **18** | **1536** | **12** | **4K** |
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
## How to use
|
32 |
+
|
33 |
+
```python
|
34 |
+
import torch
|
35 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
36 |
+
|
37 |
+
model_path = 'Mxode/NanoLM-1B-Instruct-v2'
|
38 |
+
|
39 |
+
model = AutoModelForCausalLM.from_pretrained(model_path).to('cuda:0', torch.bfloat16)
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
41 |
+
|
42 |
+
|
43 |
+
def get_response(prompt: str, **kwargs):
|
44 |
+
generation_args = dict(
|
45 |
+
max_new_tokens = kwargs.pop("max_new_tokens", 512),
|
46 |
+
do_sample = kwargs.pop("do_sample", True),
|
47 |
+
temperature = kwargs.pop("temperature", 0.7),
|
48 |
+
top_p = kwargs.pop("top_p", 0.8),
|
49 |
+
top_k = kwargs.pop("top_k", 40),
|
50 |
+
**kwargs
|
51 |
+
)
|
52 |
+
|
53 |
+
messages = [
|
54 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
55 |
+
{"role": "user", "content": prompt}
|
56 |
+
]
|
57 |
+
text = tokenizer.apply_chat_template(
|
58 |
+
messages,
|
59 |
+
tokenize=False,
|
60 |
+
add_generation_prompt=True
|
61 |
+
)
|
62 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
63 |
+
|
64 |
+
generated_ids = model.generate(model_inputs.input_ids, **generation_args)
|
65 |
+
generated_ids = [
|
66 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
67 |
+
]
|
68 |
+
|
69 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
70 |
+
return response
|
71 |
+
|
72 |
+
|
73 |
+
prompt = "Calculate (99 - 1) * (3 + 4)"
|
74 |
+
print(get_response(prompt, do_sample=False))
|
75 |
+
|
76 |
+
"""
|
77 |
+
To calculate \((99 - 1) * (3 + 4)\), follow the order of operations, also known as PEMDAS (Parentheses, Exponents, Multiplication and Division, and Addition and Subtraction).
|
78 |
+
|
79 |
+
First, solve the expressions inside the parentheses:
|
80 |
+
|
81 |
+
1. \(99 - 1 = 98\)
|
82 |
+
2. \(3 + 4 = 7\)
|
83 |
+
|
84 |
+
Now, multiply the results:
|
85 |
+
|
86 |
+
\(98 * 7 = 686\)
|
87 |
+
|
88 |
+
So, \((99 - 1) * (3 + 4) = 686\).
|
89 |
+
"""
|
90 |
+
```
|
README_zh-CN.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# NanoLM-1B-Instruct-v2
|
2 |
+
|
3 |
+
[English](README.md) | 简体中文
|
4 |
+
|
5 |
+
|
6 |
+
## Introduction
|
7 |
+
|
8 |
+
为了探究小模型的潜能,我尝试构建一系列小模型,并存放于 [NanoLM Collections](https://huggingface.co/collections/Mxode/nanolm-66d6d75b4a69536bca2705b2)。
|
9 |
+
|
10 |
+
这是 NanoLM-1B-Instruct-v2。该模型目前仅支持**英文**。
|
11 |
+
|
12 |
+
|
13 |
+
## 模型详情
|
14 |
+
|
15 |
+
| Nano LMs | Non-emb Params | Arch | Layers | Dim | Heads | Seq Len |
|
16 |
+
| :----------: | :------------------: | :---: | :----: | :-------: | :---: | :---: |
|
17 |
+
| 25M | 15M | MistralForCausalLM | 12 | 312 | 12 | 2K |
|
18 |
+
| 70M | 42M | LlamaForCausalLM | 12 | 576 | 9 |2K|
|
19 |
+
| 0.3B | 180M | Qwen2ForCausalLM | 12 | 896 | 14 |4K|
|
20 |
+
| **1B** | **840M** | **Qwen2ForCausalLM** | **18** | **1536** | **12** | **4K** |
|
21 |
+
|
22 |
+
|
23 |
+
## 如何使用
|
24 |
+
|
25 |
+
```python
|
26 |
+
import torch
|
27 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
28 |
+
|
29 |
+
model_path = 'Mxode/NanoLM-1B-Instruct-v2'
|
30 |
+
|
31 |
+
model = AutoModelForCausalLM.from_pretrained(model_path).to('cuda:0', torch.bfloat16)
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
33 |
+
|
34 |
+
|
35 |
+
def get_response(prompt: str, **kwargs):
|
36 |
+
generation_args = dict(
|
37 |
+
max_new_tokens = kwargs.pop("max_new_tokens", 512),
|
38 |
+
do_sample = kwargs.pop("do_sample", True),
|
39 |
+
temperature = kwargs.pop("temperature", 0.7),
|
40 |
+
top_p = kwargs.pop("top_p", 0.8),
|
41 |
+
top_k = kwargs.pop("top_k", 40),
|
42 |
+
**kwargs
|
43 |
+
)
|
44 |
+
|
45 |
+
messages = [
|
46 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
47 |
+
{"role": "user", "content": prompt}
|
48 |
+
]
|
49 |
+
text = tokenizer.apply_chat_template(
|
50 |
+
messages,
|
51 |
+
tokenize=False,
|
52 |
+
add_generation_prompt=True
|
53 |
+
)
|
54 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
55 |
+
|
56 |
+
generated_ids = model.generate(model_inputs.input_ids, **generation_args)
|
57 |
+
generated_ids = [
|
58 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
59 |
+
]
|
60 |
+
|
61 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
62 |
+
return response
|
63 |
+
|
64 |
+
|
65 |
+
prompt = "Calculate (99 - 1) * (3 + 4)"
|
66 |
+
print(get_response(prompt, do_sample=False))
|
67 |
+
|
68 |
+
"""
|
69 |
+
To calculate \((99 - 1) * (3 + 4)\), follow the order of operations, also known as PEMDAS (Parentheses, Exponents, Multiplication and Division, and Addition and Subtraction).
|
70 |
+
|
71 |
+
First, solve the expressions inside the parentheses:
|
72 |
+
|
73 |
+
1. \(99 - 1 = 98\)
|
74 |
+
2. \(3 + 4 = 7\)
|
75 |
+
|
76 |
+
Now, multiply the results:
|
77 |
+
|
78 |
+
\(98 * 7 = 686\)
|
79 |
+
|
80 |
+
So, \((99 - 1) * (3 + 4) = 686\).
|
81 |
+
"""
|
82 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Mxode/NanoLM-1B-Instruct-v2",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 1536,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 8960,
|
13 |
+
"max_position_embeddings": 4096,
|
14 |
+
"max_window_layers": 18,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 18,
|
18 |
+
"num_key_value_heads": 2,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_theta": 10000.0,
|
21 |
+
"sliding_window": 32768,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.42.0",
|
25 |
+
"use_cache": false,
|
26 |
+
"use_mrope": false,
|
27 |
+
"use_sliding_window": false,
|
28 |
+
"vocab_size": 151936
|
29 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_sample": true,
|
3 |
+
"eos_token_id": 151645,
|
4 |
+
"max_new_tokens": 2048,
|
5 |
+
"pad_token_id": 151643,
|
6 |
+
"temperature": 0.3,
|
7 |
+
"top_k": 20,
|
8 |
+
"top_p": 0.7,
|
9 |
+
"transformers_version": "4.42.0"
|
10 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dddac4d45b4ba0bdf1e46933067cec65c9e211f7b4a535c67b5b1423cab6f344
|
3 |
+
size 2151496896
|
special_tokens_map.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|im_end|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
}
|
20 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"additional_special_tokens": [
|
30 |
+
"<|im_start|>",
|
31 |
+
"<|im_end|>"
|
32 |
+
],
|
33 |
+
"bos_token": null,
|
34 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
35 |
+
"clean_up_tokenization_spaces": false,
|
36 |
+
"eos_token": "<|im_end|>",
|
37 |
+
"errors": "replace",
|
38 |
+
"model_max_length": 32768,
|
39 |
+
"pad_token": "<|endoftext|>",
|
40 |
+
"split_special_tokens": false,
|
41 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
42 |
+
"unk_token": null
|
43 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|