Mungert commited on
Commit
46e1627
·
verified ·
1 Parent(s): 1b48f1d

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +141 -0
README.md ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ datasets:
6
+ - allenai/olmOCR-mix-0225
7
+ base_model:
8
+ - Qwen/Qwen2.5-VL-7B-Instruct
9
+ library_name: transformers
10
+ ---
11
+
12
+ # <span style="color: #7FFF7F;">olmOCR-7B-0725 GGUF Models</span>
13
+
14
+
15
+ ## <span style="color: #7F7FFF;">Model Generation Details</span>
16
+
17
+ This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`7f975995`](https://github.com/ggerganov/llama.cpp/commit/7f97599581fcf0c37432dd3b1f503b91bed97695).
18
+
19
+
20
+
21
+
22
+
23
+ ---
24
+
25
+ ## <span style="color: #7FFF7F;">Quantization Beyond the IMatrix</span>
26
+
27
+ I've been experimenting with a new quantization approach that selectively elevates the precision of key layers beyond what the default IMatrix configuration provides.
28
+
29
+ In my testing, standard IMatrix quantization underperforms at lower bit depths, especially with Mixture of Experts (MoE) models. To address this, I'm using the `--tensor-type` option in `llama.cpp` to manually "bump" important layers to higher precision. You can see the implementation here:
30
+ 👉 [Layer bumping with llama.cpp](https://github.com/Mungert69/GGUFModelBuilder/blob/main/model-converter/tensor_list_builder.py)
31
+
32
+ While this does increase model file size, it significantly improves precision for a given quantization level.
33
+
34
+ ### **I'd love your feedback—have you tried this? How does it perform for you?**
35
+
36
+
37
+
38
+
39
+ ---
40
+
41
+ <a href="https://readyforquantum.com/huggingface_gguf_selection_guide.html" style="color: #7FFF7F;">
42
+ Click here to get info on choosing the right GGUF model format
43
+ </a>
44
+
45
+ ---
46
+
47
+
48
+
49
+ <!--Begin Original Model Card-->
50
+
51
+
52
+ <img alt="olmOCR Logo" src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/olmocr/olmocr.png" width="242px" style="margin-left:'auto' margin-right:'auto' display:'block'">
53
+
54
+ # olmOCR-7B-0725
55
+
56
+ This is a release of the olmOCR model that's fine tuned from Qwen2.5-VL-7B-Instruct using the
57
+ [olmOCR-mix-0225](https://huggingface.co/datasets/allenai/olmOCR-mix-0225) dataset.
58
+
59
+ Quick links:
60
+ - 📃 [Paper](https://olmocr.allenai.org/papers/olmocr.pdf)
61
+ - 🤗 [Dataset](https://huggingface.co/datasets/allenai/olmOCR-mix-0225)
62
+ - 🛠️ [Code](https://github.com/allenai/olmocr)
63
+ - 🎮 [Demo](https://olmocr.allenai.org/)
64
+
65
+ The best way to use this model is via the [olmOCR toolkit](https://github.com/allenai/olmocr).
66
+ The toolkit comes with an efficient inference setup via sglang that can handle millions of documents
67
+ at scale.
68
+
69
+ ## Usage
70
+
71
+ This model expects as input a single document image, rendered such that the longest dimension is 1288 pixels.
72
+
73
+ The prompt must then contain the additional metadata from the document, and the easiest way to generate this
74
+ is to use the methods provided by the [olmOCR toolkit](https://github.com/allenai/olmocr).
75
+
76
+
77
+ ## License and use
78
+
79
+ olmOCR is licensed under the Apache 2.0 license.
80
+ olmOCR is intended for research and educational use.
81
+ For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use).
82
+
83
+
84
+ <!--End Original Model Card-->
85
+
86
+ ---
87
+
88
+ # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
89
+
90
+ Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**:
91
+
92
+ 👉 [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)
93
+
94
+
95
+ The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder)
96
+
97
+ 💬 **How to test**:
98
+ Choose an **AI assistant type**:
99
+ - `TurboLLM` (GPT-4.1-mini)
100
+ - `HugLLM` (Hugginface Open-source models)
101
+ - `TestLLM` (Experimental CPU-only)
102
+
103
+ ### **What I’m Testing**
104
+ I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:
105
+ - **Function calling** against live network services
106
+ - **How small can a model go** while still handling:
107
+ - Automated **Nmap security scans**
108
+ - **Quantum-readiness checks**
109
+ - **Network Monitoring tasks**
110
+
111
+ 🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space):
112
+ - ✅ **Zero-configuration setup**
113
+ - ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low.
114
+ - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!
115
+
116
+ ### **Other Assistants**
117
+ 🟢 **TurboLLM** – Uses **gpt-4.1-mini** :
118
+ - **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited.
119
+ - **Create custom cmd processors to run .net code on Quantum Network Monitor Agents**
120
+ - **Real-time network diagnostics and monitoring**
121
+ - **Security Audits**
122
+ - **Penetration testing** (Nmap/Metasploit)
123
+
124
+ 🔵 **HugLLM** – Latest Open-source models:
125
+ - 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita.
126
+
127
+ ### 💡 **Example commands you could test**:
128
+ 1. `"Give me info on my websites SSL certificate"`
129
+ 2. `"Check if my server is using quantum safe encyption for communication"`
130
+ 3. `"Run a comprehensive security audit on my server"`
131
+ 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a [Quantum Network Monitor Agent](https://readyforquantum.com/Download/?utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) to run the .net code on. This is a very flexible and powerful feature. Use with caution!
132
+
133
+ ### Final Word
134
+
135
+ I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.
136
+
137
+ If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone.
138
+
139
+ I'm also open to job opportunities or sponsorship.
140
+
141
+ Thank you! 😊