File size: 14,682 Bytes
d2cb9ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
---
pipeline_tag: text-generation
inference: false
license: apache-2.0
library_name: transformers
tags:
- language
- granite-4.0
base_model:
- ibm-granite/granite-4.0-tiny-base-preview
---

# <span style="color: #7FFF7F;">granite-4.0-tiny-preview GGUF Models</span>


## <span style="color: #7F7FFF;">Model Generation Details</span>

This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`adef8178`](https://github.com/ggerganov/llama.cpp/commit/adef81781a15083f218eae6c488b95cdad781971).





---

## <span style="color: #7FFF7F;">Quantization Beyond the IMatrix</span>

I've been experimenting with a new quantization approach that selectively elevates the precision of key layers beyond what the default IMatrix configuration provides.

In my testing, standard IMatrix quantization underperforms at lower bit depths, especially with Mixture of Experts (MoE) models. To address this, I'm using the `--tensor-type` option in `llama.cpp` to manually "bump" important layers to higher precision. You can see the implementation here:  
👉 [Layer bumping with llama.cpp](https://github.com/Mungert69/GGUFModelBuilder/blob/main/model-converter/tensor_list_builder.py)

While this does increase model file size, it significantly improves precision for a given quantization level.

### **I'd love your feedback—have you tried this? How does it perform for you?**




---

<a href="https://readyforquantum.com/huggingface_gguf_selection_guide.html" style="color: #7FFF7F;">
  Click here to get info on choosing the right GGUF model format
</a>

---



<!--Begin Original Model Card-->


# Granite-4.0-Tiny-Preview

**Model Summary:**
Granite-4-Tiny-Preview is a 7B parameter fine-grained hybrid mixture-of-experts (MoE) instruct model finetuned from Granite-4.0-Tiny-Base-Preview using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems. This model is developed using a diverse set of techniques with a structured chat format, including supervised finetuning, and model alignment using reinforcement learning.

- **Developers:** Granite Team, IBM
- **Website**: [Granite Docs](https://www.ibm.com/granite/docs/)
- **Release Date**: May 2nd, 2025
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)

**Supported Languages:** 
English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. However, users may finetune this Granite model for languages beyond these 12 languages.

**Intended Use:** 
This model is designed to handle general instruction-following tasks and can be integrated into AI assistants across various domains, including business applications.

**Capabilities**
* Thinking
* Summarization
* Text classification
* Text extraction
* Question-answering
* Retrieval Augmented Generation (RAG)
* Code related tasks
* Function-calling tasks
* Multilingual dialog use cases
* Long-context tasks including long document/meeting summarization, long document QA, etc.

**Installation:** 
You need to install transformer from source to use this checkpoint.
<!-- This is a simple example of how to use Granite-4.0-Tiny-Base-Preview model. -->

<!-- Usage: Install transformer from source or use transformer version v4.45 to use this checkpoint. -->

HuggingFace PR: https://github.com/huggingface/transformers/pull/37658

Install transformer from source: https://huggingface.co/docs/transformers/en/installation#install-from-source
<!-- While the native support of this model in Hugging Face Transformers is pending ([PR](https://github.com/huggingface/transformers/pull/37658)), you need to install transformers from the following source to use this model:
```shell
git clone https://github.com/Ssukriti/transformers.git
cd transformers
git checkout granitemoe_hybrid_external_cleanup
pip install -e .
``` -->
<!-- Install the following libraries:

```shell
pip install torch torchvision torchaudio
pip install accelerate
pip install transformers
``` -->
**Generation:**
After installation, copy the code snippet below to run the example.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
import torch

model_path="ibm-granite/granite-4.0-tiny-preview"
device="cuda"
model = AutoModelForCausalLM.from_pretrained(
        model_path,
        device_map=device,
        torch_dtype=torch.bfloat16,
    )
tokenizer = AutoTokenizer.from_pretrained(
        model_path
)

conv = [{"role": "user", "content":"You have 10 liters of a 30% acid solution. How many liters of a 70% acid solution must be added to achieve a 50% acid mixture?"}]

input_ids = tokenizer.apply_chat_template(conv, return_tensors="pt", thinking=True, return_dict=True, add_generation_prompt=True).to(device)

set_seed(42)
output = model.generate(
    **input_ids,
    max_new_tokens=8192,
)

prediction = tokenizer.decode(output[0, input_ids["input_ids"].shape[1]:], skip_special_tokens=True)
print(prediction)
```

**Evaluation Results:**

<table>
<thead>
    <caption style="text-align:center"><b>Comparison with previous granite models<sup id="fnref1"><a href="#fn1">1</a></sup>. Scores of AlpacaEval-2.0 and Arena-Hard are calculated with thinking=True</b></caption>
  <tr>
    <th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">Arena-Hard</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">AlpacaEval-2.0</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">MMLU</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">PopQA</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">TruthfulQA</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">BigBenchHard</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">DROP</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">GSM8K</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">HumanEval</th>
   <th style="text-align:center; background-color: #001d6c; color: white;">HumanEval+</th>
  <th style="text-align:center; background-color: #001d6c; color: white;">IFEval</th>
  <th style="text-align:center; background-color: #001d6c; color: white;">AttaQ</th>
  </tr></thead>
<tbody>
 
  <tr>
      <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;"><b>Granite-3.3-2B-Instruct</b></td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 28.86 </td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 43.45 </td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 55.88 </td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 18.4 </td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 58.97 </td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 52.51 </td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 35.98 </td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 72.48 </td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 80.51 </td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 75.68 </td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 65.8 </td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">87.47</td>
      </tr>
  <tr>
      <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.3-8B-Instruct</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 57.56 </td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 62.68 </td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 65.54 </td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 26.17 </td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 66.86 </td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 59.01 </td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 41.53 </td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 80.89 </td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 89.73 </td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 86.09 </td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 74.82 </td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">88.5</td>
      </tr>
  <tr>
      <td style="text-align:left; background-color: #DAE8FF; color: black;"><b>Granite-4.0-Tiny-Preview</b></td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;"> 26.70 </td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;"> 35.16 </td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;"> 60.40 </td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;"> 22.93 </td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;"> 58.07 </td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;"> 55.71 </td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;"> 46.22 </td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;"> 70.05  </td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;"> 82.41 </td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;"> 78.33 </td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;"> 63.03 </td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;"> 86.10 </td>
      </tr> 
</tbody></table>

**Training Data:** 
Overall, our training data is largely comprised of two key sources: (1) publicly available datasets with permissive license, (2) internal synthetically generated data targeted to enhance reasoning capabilites. 


**Infrastructure:**
We train Granite-4.0-Tiny-Preview using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs.

**Ethical Considerations and Limitations:** 
Granite-4.0-Tiny-Preview, leverages both permissively licensed open-source and select proprietary data for enhanced performance. Since it inherits its foundation from the previous model, all ethical considerations and limitations applicable to [Granite-4.0-Tiny-Preview](https://huggingface.co/ibm-granite/granite-4.0-tiny-preview) remain relevant.


**Resources**
- ⭐️ Learn about the latest updates with Granite: https://www.ibm.com/granite
- 📄 Get started with tutorials, best practices, and prompt engineering advice: https://www.ibm.com/granite/docs/
- 💡 Learn about the latest Granite learning resources: https://ibm.biz/granite-learning-resources



<!--End Original Model Card-->

---

# <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>

Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**:  

👉 [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)  


The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder)

💬 **How to test**:  
 Choose an **AI assistant type**:  
   - `TurboLLM` (GPT-4.1-mini)  
   - `HugLLM` (Hugginface Open-source models)  
   - `TestLLM` (Experimental CPU-only)  

### **What I’m Testing**  
I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:  
- **Function calling** against live network services  
- **How small can a model go** while still handling:  
  - Automated **Nmap security scans**  
  - **Quantum-readiness checks**  
  - **Network Monitoring tasks**  

🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space):  
-**Zero-configuration setup**  
- ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low.
- 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!  

### **Other Assistants**  
🟢 **TurboLLM** – Uses **gpt-4.1-mini** :
- **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited. 
- **Create custom cmd processors to run .net code on Quantum Network Monitor Agents**
- **Real-time network diagnostics and monitoring**
- **Security Audits**
- **Penetration testing** (Nmap/Metasploit)  

🔵 **HugLLM** – Latest Open-source models:  
- 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita.

### 💡 **Example commands you could test**:  
1. `"Give me info on my websites SSL certificate"`  
2. `"Check if my server is using quantum safe encyption for communication"`  
3. `"Run a comprehensive security audit on my server"`
4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a [Quantum Network Monitor Agent](https://readyforquantum.com/Download/?utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) to run the .net code on. This is a very flexible and powerful feature. Use with caution!

### Final Word

I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.

If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone.

I'm also open to job opportunities or sponsorship.

Thank you! 😊