File size: 14,682 Bytes
d2cb9ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
---
pipeline_tag: text-generation
inference: false
license: apache-2.0
library_name: transformers
tags:
- language
- granite-4.0
base_model:
- ibm-granite/granite-4.0-tiny-base-preview
---
# <span style="color: #7FFF7F;">granite-4.0-tiny-preview GGUF Models</span>
## <span style="color: #7F7FFF;">Model Generation Details</span>
This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`adef8178`](https://github.com/ggerganov/llama.cpp/commit/adef81781a15083f218eae6c488b95cdad781971).
---
## <span style="color: #7FFF7F;">Quantization Beyond the IMatrix</span>
I've been experimenting with a new quantization approach that selectively elevates the precision of key layers beyond what the default IMatrix configuration provides.
In my testing, standard IMatrix quantization underperforms at lower bit depths, especially with Mixture of Experts (MoE) models. To address this, I'm using the `--tensor-type` option in `llama.cpp` to manually "bump" important layers to higher precision. You can see the implementation here:
👉 [Layer bumping with llama.cpp](https://github.com/Mungert69/GGUFModelBuilder/blob/main/model-converter/tensor_list_builder.py)
While this does increase model file size, it significantly improves precision for a given quantization level.
### **I'd love your feedback—have you tried this? How does it perform for you?**
---
<a href="https://readyforquantum.com/huggingface_gguf_selection_guide.html" style="color: #7FFF7F;">
Click here to get info on choosing the right GGUF model format
</a>
---
<!--Begin Original Model Card-->
# Granite-4.0-Tiny-Preview
**Model Summary:**
Granite-4-Tiny-Preview is a 7B parameter fine-grained hybrid mixture-of-experts (MoE) instruct model finetuned from Granite-4.0-Tiny-Base-Preview using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems. This model is developed using a diverse set of techniques with a structured chat format, including supervised finetuning, and model alignment using reinforcement learning.
- **Developers:** Granite Team, IBM
- **Website**: [Granite Docs](https://www.ibm.com/granite/docs/)
- **Release Date**: May 2nd, 2025
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
**Supported Languages:**
English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. However, users may finetune this Granite model for languages beyond these 12 languages.
**Intended Use:**
This model is designed to handle general instruction-following tasks and can be integrated into AI assistants across various domains, including business applications.
**Capabilities**
* Thinking
* Summarization
* Text classification
* Text extraction
* Question-answering
* Retrieval Augmented Generation (RAG)
* Code related tasks
* Function-calling tasks
* Multilingual dialog use cases
* Long-context tasks including long document/meeting summarization, long document QA, etc.
**Installation:**
You need to install transformer from source to use this checkpoint.
<!-- This is a simple example of how to use Granite-4.0-Tiny-Base-Preview model. -->
<!-- Usage: Install transformer from source or use transformer version v4.45 to use this checkpoint. -->
HuggingFace PR: https://github.com/huggingface/transformers/pull/37658
Install transformer from source: https://huggingface.co/docs/transformers/en/installation#install-from-source
<!-- While the native support of this model in Hugging Face Transformers is pending ([PR](https://github.com/huggingface/transformers/pull/37658)), you need to install transformers from the following source to use this model:
```shell
git clone https://github.com/Ssukriti/transformers.git
cd transformers
git checkout granitemoe_hybrid_external_cleanup
pip install -e .
``` -->
<!-- Install the following libraries:
```shell
pip install torch torchvision torchaudio
pip install accelerate
pip install transformers
``` -->
**Generation:**
After installation, copy the code snippet below to run the example.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
import torch
model_path="ibm-granite/granite-4.0-tiny-preview"
device="cuda"
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map=device,
torch_dtype=torch.bfloat16,
)
tokenizer = AutoTokenizer.from_pretrained(
model_path
)
conv = [{"role": "user", "content":"You have 10 liters of a 30% acid solution. How many liters of a 70% acid solution must be added to achieve a 50% acid mixture?"}]
input_ids = tokenizer.apply_chat_template(conv, return_tensors="pt", thinking=True, return_dict=True, add_generation_prompt=True).to(device)
set_seed(42)
output = model.generate(
**input_ids,
max_new_tokens=8192,
)
prediction = tokenizer.decode(output[0, input_ids["input_ids"].shape[1]:], skip_special_tokens=True)
print(prediction)
```
**Evaluation Results:**
<table>
<thead>
<caption style="text-align:center"><b>Comparison with previous granite models<sup id="fnref1"><a href="#fn1">1</a></sup>. Scores of AlpacaEval-2.0 and Arena-Hard are calculated with thinking=True</b></caption>
<tr>
<th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
<th style="text-align:center; background-color: #001d6c; color: white;">Arena-Hard</th>
<th style="text-align:center; background-color: #001d6c; color: white;">AlpacaEval-2.0</th>
<th style="text-align:center; background-color: #001d6c; color: white;">MMLU</th>
<th style="text-align:center; background-color: #001d6c; color: white;">PopQA</th>
<th style="text-align:center; background-color: #001d6c; color: white;">TruthfulQA</th>
<th style="text-align:center; background-color: #001d6c; color: white;">BigBenchHard</th>
<th style="text-align:center; background-color: #001d6c; color: white;">DROP</th>
<th style="text-align:center; background-color: #001d6c; color: white;">GSM8K</th>
<th style="text-align:center; background-color: #001d6c; color: white;">HumanEval</th>
<th style="text-align:center; background-color: #001d6c; color: white;">HumanEval+</th>
<th style="text-align:center; background-color: #001d6c; color: white;">IFEval</th>
<th style="text-align:center; background-color: #001d6c; color: white;">AttaQ</th>
</tr></thead>
<tbody>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;"><b>Granite-3.3-2B-Instruct</b></td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 28.86 </td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 43.45 </td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 55.88 </td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 18.4 </td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 58.97 </td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 52.51 </td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 35.98 </td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 72.48 </td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 80.51 </td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 75.68 </td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 65.8 </td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">87.47</td>
</tr>
<tr>
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.3-8B-Instruct</td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 57.56 </td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 62.68 </td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 65.54 </td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 26.17 </td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 66.86 </td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 59.01 </td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 41.53 </td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 80.89 </td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 89.73 </td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 86.09 </td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;"> 74.82 </td>
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">88.5</td>
</tr>
<tr>
<td style="text-align:left; background-color: #DAE8FF; color: black;"><b>Granite-4.0-Tiny-Preview</b></td>
<td style="text-align:center; background-color: #DAE8FF; color: black;"> 26.70 </td>
<td style="text-align:center; background-color: #DAE8FF; color: black;"> 35.16 </td>
<td style="text-align:center; background-color: #DAE8FF; color: black;"> 60.40 </td>
<td style="text-align:center; background-color: #DAE8FF; color: black;"> 22.93 </td>
<td style="text-align:center; background-color: #DAE8FF; color: black;"> 58.07 </td>
<td style="text-align:center; background-color: #DAE8FF; color: black;"> 55.71 </td>
<td style="text-align:center; background-color: #DAE8FF; color: black;"> 46.22 </td>
<td style="text-align:center; background-color: #DAE8FF; color: black;"> 70.05 </td>
<td style="text-align:center; background-color: #DAE8FF; color: black;"> 82.41 </td>
<td style="text-align:center; background-color: #DAE8FF; color: black;"> 78.33 </td>
<td style="text-align:center; background-color: #DAE8FF; color: black;"> 63.03 </td>
<td style="text-align:center; background-color: #DAE8FF; color: black;"> 86.10 </td>
</tr>
</tbody></table>
**Training Data:**
Overall, our training data is largely comprised of two key sources: (1) publicly available datasets with permissive license, (2) internal synthetically generated data targeted to enhance reasoning capabilites.
**Infrastructure:**
We train Granite-4.0-Tiny-Preview using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs.
**Ethical Considerations and Limitations:**
Granite-4.0-Tiny-Preview, leverages both permissively licensed open-source and select proprietary data for enhanced performance. Since it inherits its foundation from the previous model, all ethical considerations and limitations applicable to [Granite-4.0-Tiny-Preview](https://huggingface.co/ibm-granite/granite-4.0-tiny-preview) remain relevant.
**Resources**
- ⭐️ Learn about the latest updates with Granite: https://www.ibm.com/granite
- 📄 Get started with tutorials, best practices, and prompt engineering advice: https://www.ibm.com/granite/docs/
- 💡 Learn about the latest Granite learning resources: https://ibm.biz/granite-learning-resources
<!--End Original Model Card-->
---
# <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**:
👉 [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)
The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder)
💬 **How to test**:
Choose an **AI assistant type**:
- `TurboLLM` (GPT-4.1-mini)
- `HugLLM` (Hugginface Open-source models)
- `TestLLM` (Experimental CPU-only)
### **What I’m Testing**
I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:
- **Function calling** against live network services
- **How small can a model go** while still handling:
- Automated **Nmap security scans**
- **Quantum-readiness checks**
- **Network Monitoring tasks**
🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space):
- ✅ **Zero-configuration setup**
- ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low.
- 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!
### **Other Assistants**
🟢 **TurboLLM** – Uses **gpt-4.1-mini** :
- **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited.
- **Create custom cmd processors to run .net code on Quantum Network Monitor Agents**
- **Real-time network diagnostics and monitoring**
- **Security Audits**
- **Penetration testing** (Nmap/Metasploit)
🔵 **HugLLM** – Latest Open-source models:
- 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita.
### 💡 **Example commands you could test**:
1. `"Give me info on my websites SSL certificate"`
2. `"Check if my server is using quantum safe encyption for communication"`
3. `"Run a comprehensive security audit on my server"`
4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a [Quantum Network Monitor Agent](https://readyforquantum.com/Download/?utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) to run the .net code on. This is a very flexible and powerful feature. Use with caution!
### Final Word
I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.
If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone.
I'm also open to job opportunities or sponsorship.
Thank you! 😊
|