File size: 25,312 Bytes
be9edda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
---
license: apache-2.0
library_name: transformers
tags:
- language
- granite-3.1
new_version: ibm-granite/granite-3.3-8b-base
---

# <span style="color: #7FFF7F;">granite-3.1-8b-base GGUF Models</span>


## <span style="color: #7F7FFF;">Model Generation Details</span>

This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`0a5a3b5c`](https://github.com/ggerganov/llama.cpp/commit/0a5a3b5cdfd887cf0f8e09d9ff89dee130cfcdde).





---

## <span style="color: #7FFF7F;">Quantization Beyond the IMatrix</span>

I've been experimenting with a new quantization approach that selectively elevates the precision of key layers beyond what the default IMatrix configuration provides.

In my testing, standard IMatrix quantization underperforms at lower bit depths, especially with Mixture of Experts (MoE) models. To address this, I'm using the `--tensor-type` option in `llama.cpp` to manually "bump" important layers to higher precision. You can see the implementation here:  
👉 [Layer bumping with llama.cpp](https://github.com/Mungert69/GGUFModelBuilder/blob/main/model-converter/tensor_list_builder.py)

While this does increase model file size, it significantly improves precision for a given quantization level.

### **I'd love your feedback—have you tried this? How does it perform for you?**




---

<a href="https://readyforquantum.com/huggingface_gguf_selection_guide.html" style="color: #7FFF7F;">
  Click here to get info on choosing the right GGUF model format
</a>

---



<!--Begin Original Model Card-->


# Granite-3.1-8B-Base

**Model Summary:** 
Granite-3.1-8B-Base extends the context length of Granite-3.0-8B-Base from 4K to 128K using a progressive training strategy by increasing the supported context length in increments while adjusting RoPE theta until the model has successfully adapted to desired length of 128K. This long-context pre-training stage was performed using approximately 500B tokens.

- **Developers:** Granite Team, IBM
- **GitHub Repository:** [ibm-granite/granite-3.1-language-models](https://github.com/ibm-granite/granite-3.1-language-models)
- **Website**: [Granite Docs](https://www.ibm.com/granite/docs/)
- **Paper:** [Granite 3.1 Language Models (coming soon)](https://huggingface.co/collections/ibm-granite/granite-31-language-models-6751dbbf2f3389bec5c6f02d) 
- **Release Date**: December 18th, 2024
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)

**Supported Languages:** 
English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. Users may finetune Granite 3.1 models for languages beyond these 12 languages.

**Intended Use:**
Prominent use cases of LLMs in text-to-text generation include summarization, text classification, extraction, question-answering, and other long-context tasks. All Granite Base models are able to handle these tasks as they were trained on a large amount of data from various domains. Moreover, they can serve as baseline to create specialized models for specific application scenarios.

**Generation:** 
This is a simple example of how to use Granite-3.1-8B-Base model.

Install the following libraries:

```shell
pip install torch torchvision torchaudio
pip install accelerate
pip install transformers
```
Then, copy the code snippet below to run the example.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "auto"
model_path = "ibm-granite/granite-3.1-8B-base"
tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()
# change input text as desired
input_text = "Where is the Thomas J. Watson Research Center located?"
# tokenize the text
input_tokens = tokenizer(input_text, return_tensors="pt").to(device)
# generate output tokens
output = model.generate(**input_tokens,
                        max_length=4000)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# print output
print(output)
```

**Evaluation Results:** 
<table>
  <caption><b>HuggingFace Open LLM Leaderboard V1</b></caption>
<thead>
  <tr>
    <th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">ARC-Challenge</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">Hellaswag</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">MMLU</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">TruthfulQA</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">Winogrande</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">GSM8K</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">Avg</th>
  </tr></thead>
  <tbody>
  <tr>
    <td style="text-align:left; background-color: #DAE8FF; color: black;">Granite-3.1-8B-Base</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">63.99</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">83.27</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">63.45</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">51.29</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">78.92</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">60.19</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">66.85</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-2B-Base</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">53.58</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">77.67</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">52.86</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">39.02</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">72.84</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">47.99</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">57.32</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-3B-A800M-Base</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">50.76</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">74.45</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">48.31</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">39.91</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">69.29</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">40.56</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">53.88</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-1B-A400M-Base</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">39.42</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">66.13</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">26.53</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">37.67</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">2.03</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">18.87</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">31.78</td>
  </tr>
</tbody></table>

<table>
  <caption><b>HuggingFace Open LLM Leaderboard V2</b></caption>
  <thead>
  <tr>
    <th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">IFEval</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">BBH</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">MATH Lvl 5</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">GPQA</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">MUSR</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">MMLU-Pro</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">Avg</th>
  </tr></thead>
  <tbody>
  <tr>
    <td style="text-align:left; background-color: #DAE8FF; color: black;">Granite-3.1-8B-Base</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">42.21</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">26.02</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">9.52</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">9.51</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">8.36</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">24.8</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">20.07</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-2B-Base</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">35.22</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">16.84</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">5.59</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">3.69</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">3.9</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">13.9</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">13.19</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-3B-A800M-Base</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">29.96</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">11.91</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">4</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">3.69</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">1.11</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">8.81</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">9.91</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-1B-A400M-Base</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">25.19</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">6.43</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">2.19</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">0.22</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">1.76</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">1.55</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">6.22</td>
  </tr>
</tbody></table>

**Model Architecture:** 
Granite-3.1-8B-Base is based on a decoder-only dense transformer architecture. Core components of this architecture are: GQA and RoPE, MLP with SwiGLU, RMSNorm, and shared input/output embeddings.
<table>
<thead>
  <tr>
    <th style="text-align:left; background-color: #001d6c; color: white;">Model</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">2B Dense</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">8B Dense</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">1B MoE</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">3B MoE</th>
  </tr></thead>
<tbody>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Embedding size</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">2048</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">4096</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">1024</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">1536</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Number of layers</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">40</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">24</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Attention head size</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">64</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">128</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">64</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">64</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Number of attention heads</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">32</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">16</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">24</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Number of KV heads</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">8</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">MLP hidden size</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">8192</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">12800</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">512</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">512</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">MLP activation</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">SwiGLU</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Number of experts</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">—</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">MoE TopK</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">—</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Initialization std</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">0.1</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Sequence length</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">128K</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Position embedding</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">RoPE</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;"># Parameters</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">2.5B</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">8.1B</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">1.3B</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">3.3B</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;"># Active parameters</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">2.5B</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">8.1B</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">400M</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">800M</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;"># Training tokens</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">12T</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">12T</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">10T</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">10T</td>
  </tr>
</tbody></table>
**Training Data:** 
This model is trained on a mix of open source and proprietary data following a three-stage training strategy.
* Stage 1 data: The data for stage 1 is sourced from diverse domains, such as: web, code, academic sources, books, and math data.
* Stage 2 data: The data for stage 2 comprises a curated mix of high-quality data from the same domains, plus multilingual and instruction data. The goal of this second training phase is to enhance the model’s performance on specific tasks. 
* Stage 3 data: The data for stage 3 consists of original stage-2 pretraining data with additional synthetic long-context data in form of QA/summary pairs where the answer
contains a recitation of the related paragraph before the answer.

A detailed attribution of datasets can be found in the [Granite 3.0 Technical Report](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/paper.pdf), [Granite 3.1 Technical Report (coming soon)](https://huggingface.co/collections/ibm-granite/granite-31-language-models-6751dbbf2f3389bec5c6f02d), and [Accompanying Author List](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/author-ack.pdf).

**Infrastructure:**
We train Granite 3.1 Language Models using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs.

**Ethical Considerations and Limitations:** 
The use of Large Language Models involves risks and ethical considerations people must be aware of, including but not limited to: bias and fairness, misinformation, and autonomous decision-making. Granite-3.1-8B-Base model is not the exception in this regard. Even though this model is suited for multiple generative AI tasks, it has not undergone any safety alignment, there it may produce problematic outputs. Additionally, it remains uncertain whether smaller models might exhibit increased susceptibility to hallucination in generation scenarios by copying text verbatim from the training dataset due to their reduced sizes and memorization capacities. This aspect is currently an active area of research, and we anticipate more rigorous exploration, comprehension, and mitigations in this domain. Regarding ethics, a latent risk associated with all Large Language Models is their malicious utilization. We urge the community to use Granite-3.1-8B-Base model with ethical intentions and in a responsible way.

**Resources**
- ⭐️ Learn about the latest updates with Granite: https://www.ibm.com/granite
- 📄 Get started with tutorials, best practices, and prompt engineering advice: https://www.ibm.com/granite/docs/
- 💡 Learn about the latest Granite learning resources: https://ibm.biz/granite-learning-resources

<!--End Original Model Card-->

---

# <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>

Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**:  

👉 [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)  


The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder)

💬 **How to test**:  
 Choose an **AI assistant type**:  
   - `TurboLLM` (GPT-4.1-mini)  
   - `HugLLM` (Hugginface Open-source models)  
   - `TestLLM` (Experimental CPU-only)  

### **What I’m Testing**  
I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:  
- **Function calling** against live network services  
- **How small can a model go** while still handling:  
  - Automated **Nmap security scans**  
  - **Quantum-readiness checks**  
  - **Network Monitoring tasks**  

🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space):  
-**Zero-configuration setup**  
- ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low.
- 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!  

### **Other Assistants**  
🟢 **TurboLLM** – Uses **gpt-4.1-mini** :
- **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited. 
- **Create custom cmd processors to run .net code on Quantum Network Monitor Agents**
- **Real-time network diagnostics and monitoring**
- **Security Audits**
- **Penetration testing** (Nmap/Metasploit)  

🔵 **HugLLM** – Latest Open-source models:  
- 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita.

### 💡 **Example commands you could test**:  
1. `"Give me info on my websites SSL certificate"`  
2. `"Check if my server is using quantum safe encyption for communication"`  
3. `"Run a comprehensive security audit on my server"`
4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a [Quantum Network Monitor Agent](https://readyforquantum.com/Download/?utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) to run the .net code on. This is a very flexible and powerful feature. Use with caution!

### Final Word

I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.

If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone.

I'm also open to job opportunities or sponsorship.

Thank you! 😊