Mungert commited on
Commit
89c2a1c
Β·
verified Β·
1 Parent(s): 028a39e

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +421 -0
README.md ADDED
@@ -0,0 +1,421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-generation
3
+ inference: false
4
+ license: apache-2.0
5
+ library_name: transformers
6
+ tags:
7
+ - language
8
+ - granite-3.1
9
+ base_model:
10
+ - ibm-granite/granite-3.1-2b-base
11
+ new_version: ibm-granite/granite-3.3-2b-instruct
12
+ ---
13
+
14
+ # <span style="color: #7FFF7F;">granite-3.1-2b-instruct GGUF Models</span>
15
+
16
+
17
+ ## <span style="color: #7F7FFF;">Model Generation Details</span>
18
+
19
+ This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`5dd942de`](https://github.com/ggerganov/llama.cpp/commit/5dd942de5922a22ec8446a4ad2203738dbcb9389).
20
+
21
+
22
+
23
+
24
+
25
+
26
+ ---
27
+
28
+ <a href="https://readyforquantum.com/huggingface_gguf_selection_guide.html" style="color: #7FFF7F;">
29
+ Click here to get info on choosing the right GGUF model format
30
+ </a>
31
+
32
+ ---
33
+
34
+
35
+
36
+ <!--Begin Original Model Card-->
37
+
38
+
39
+ # Granite-3.1-2B-Instruct
40
+
41
+ **Model Summary:**
42
+ Granite-3.1-2B-Instruct is a 2B parameter long-context instruct model finetuned from Granite-3.1-2B-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems. This model is developed using a diverse set of techniques with a structured chat format, including supervised finetuning, model alignment using reinforcement learning, and model merging.
43
+
44
+ - **Developers:** Granite Team, IBM
45
+ - **GitHub Repository:** [ibm-granite/granite-3.1-language-models](https://github.com/ibm-granite/granite-3.1-language-models)
46
+ - **Website**: [Granite Docs](https://www.ibm.com/granite/docs/)
47
+ - **Paper:** [Granite 3.1 Language Models (coming soon)](https://huggingface.co/collections/ibm-granite/granite-31-language-models-6751dbbf2f3389bec5c6f02d)
48
+ - **Release Date**: December 18th, 2024
49
+ - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
50
+
51
+ **Supported Languages:**
52
+ English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. Users may finetune Granite 3.1 models for languages beyond these 12 languages.
53
+
54
+ **Intended Use:**
55
+ The model is designed to respond to general instructions and can be used to build AI assistants for multiple domains, including business applications.
56
+
57
+ *Capabilities*
58
+ * Summarization
59
+ * Text classification
60
+ * Text extraction
61
+ * Question-answering
62
+ * Retrieval Augmented Generation (RAG)
63
+ * Code related tasks
64
+ * Function-calling tasks
65
+ * Multilingual dialog use cases
66
+ * Long-context tasks including long document/meeting summarization, long document QA, etc.
67
+
68
+ **Generation:**
69
+ This is a simple example of how to use Granite-3.1-2B-Instruct model.
70
+
71
+ Install the following libraries:
72
+
73
+ ```shell
74
+ pip install torch torchvision torchaudio
75
+ pip install accelerate
76
+ pip install transformers
77
+ ```
78
+ Then, copy the snippet from the section that is relevant for your use case.
79
+
80
+ ```python
81
+ import torch
82
+ from transformers import AutoModelForCausalLM, AutoTokenizer
83
+
84
+ device = "auto"
85
+ model_path = "ibm-granite/granite-3.1-2b-instruct"
86
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
87
+ # drop device_map if running on CPU
88
+ model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
89
+ model.eval()
90
+ # change input text as desired
91
+ chat = [
92
+ { "role": "user", "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." },
93
+ ]
94
+ chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
95
+ # tokenize the text
96
+ input_tokens = tokenizer(chat, return_tensors="pt").to(device)
97
+ # generate output tokens
98
+ output = model.generate(**input_tokens,
99
+ max_new_tokens=100)
100
+ # decode output tokens into text
101
+ output = tokenizer.batch_decode(output)
102
+ # print output
103
+ print(output)
104
+ ```
105
+ **Evaluation Results**
106
+ <table>
107
+ <caption><b>HuggingFace Open LLM Leaderboard V1</b></caption>
108
+ <thead>
109
+ <tr>
110
+ <th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
111
+ <th style="text-align:center; background-color: #001d6c; color: white;">ARC-Challenge</th>
112
+ <th style="text-align:center; background-color: #001d6c; color: white;">Hellaswag</th>
113
+ <th style="text-align:center; background-color: #001d6c; color: white;">MMLU</th>
114
+ <th style="text-align:center; background-color: #001d6c; color: white;">TruthfulQA</th>
115
+ <th style="text-align:center; background-color: #001d6c; color: white;">Winogrande</th>
116
+ <th style="text-align:center; background-color: #001d6c; color: white;">GSM8K</th>
117
+ <th style="text-align:center; background-color: #001d6c; color: white;">Avg</th>
118
+ </tr></thead>
119
+ <tbody>
120
+ <tr>
121
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">Granite-3.1-8B-Instruct</td>
122
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">62.62</td>
123
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">84.48</td>
124
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">65.34</td>
125
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">66.23</td>
126
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">75.37</td>
127
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">73.84</td>
128
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">71.31</td>
129
+ </tr>
130
+ <tr>
131
+ <td style="text-align:left; background-color: #DAE8FF; color: #2D2D2D;">Granite-3.1-2B-Instruct</td>
132
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">54.61</td>
133
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">75.14</td>
134
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">55.31</td>
135
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">59.42</td>
136
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">67.48</td>
137
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">52.76</td>
138
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">60.79</td>
139
+ </tr>
140
+ <tr>
141
+ <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-3B-A800M-Instruct</td>
142
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">50.42</td>
143
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">73.01</td>
144
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">52.19</td>
145
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">49.71</td>
146
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">64.87</td>
147
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">48.97</td>
148
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">56.53</td>
149
+ </tr>
150
+ <tr>
151
+ <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-1B-A400M-Instruct</td>
152
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">42.66</td>
153
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">65.97</td>
154
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">26.13</td>
155
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">46.77</td>
156
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">62.35</td>
157
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">33.88</td>
158
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">46.29</td>
159
+ </tr>
160
+ </tbody></table>
161
+
162
+ <table>
163
+ <caption><b>HuggingFace Open LLM Leaderboard V2</b></caption>
164
+ <thead>
165
+ <tr>
166
+ <th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
167
+ <th style="text-align:center; background-color: #001d6c; color: white;">IFEval</th>
168
+ <th style="text-align:center; background-color: #001d6c; color: white;">BBH</th>
169
+ <th style="text-align:center; background-color: #001d6c; color: white;">MATH Lvl 5</th>
170
+ <th style="text-align:center; background-color: #001d6c; color: white;">GPQA</th>
171
+ <th style="text-align:center; background-color: #001d6c; color: white;">MUSR</th>
172
+ <th style="text-align:center; background-color: #001d6c; color: white;">MMLU-Pro</th>
173
+ <th style="text-align:center; background-color: #001d6c; color: white;">Avg</th>
174
+ </tr></thead>
175
+ <tbody>
176
+ <tr>
177
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">Granite-3.1-8B-Instruct</td>
178
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">72.08</td>
179
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">34.09</td>
180
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">21.68</td>
181
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">8.28</td>
182
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">19.01</td>
183
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">28.19</td>
184
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">30.55</td>
185
+ </tr>
186
+ <tr>
187
+ <td style="text-align:left; background-color: #DAE8FF; color: #2D2D2D;">Granite-3.1-2B-Instruct</td>
188
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">62.86</td>
189
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">21.82</td>
190
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">11.33</td>
191
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">5.26</td>
192
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">4.87</td>
193
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">20.21</td>
194
+ <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">21.06</td>
195
+ </tr>
196
+ <tr>
197
+ <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-3B-A800M-Instruct</td>
198
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">55.16</td>
199
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">16.69</td>
200
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">10.35</td>
201
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">5.15</td>
202
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">2.51</td>
203
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">12.75</td>
204
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">17.1</td>
205
+ </tr>
206
+ <tr>
207
+ <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-1B-A400M-Instruct</td>
208
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">46.86</td>
209
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">6.18</td>
210
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">4.08</td>
211
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">0</td>
212
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">0.78</td>
213
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">2.41</td>
214
+ <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">10.05</td>
215
+ </tr>
216
+ </tbody></table>
217
+
218
+ **Model Architecture:**
219
+ Granite-3.1-2B-Instruct is based on a decoder-only dense transformer architecture. Core components of this architecture are: GQA and RoPE, MLP with SwiGLU, RMSNorm, and shared input/output embeddings.
220
+
221
+ <table>
222
+ <thead>
223
+ <tr>
224
+ <th style="text-align:left; background-color: #001d6c; color: white;">Model</th>
225
+ <th style="text-align:center; background-color: #001d6c; color: white;">2B Dense</th>
226
+ <th style="text-align:center; background-color: #001d6c; color: white;">8B Dense</th>
227
+ <th style="text-align:center; background-color: #001d6c; color: white;">1B MoE</th>
228
+ <th style="text-align:center; background-color: #001d6c; color: white;">3B MoE</th>
229
+ </tr></thead>
230
+ <tbody>
231
+ <tr>
232
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">Embedding size</td>
233
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">2048</td>
234
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">4096</td>
235
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">1024</td>
236
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">1536</td>
237
+ </tr>
238
+ <tr>
239
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">Number of layers</td>
240
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">40</td>
241
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
242
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">24</td>
243
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
244
+ </tr>
245
+ <tr>
246
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">Attention head size</td>
247
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">64</td>
248
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">128</td>
249
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">64</td>
250
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">64</td>
251
+ </tr>
252
+ <tr>
253
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">Number of attention heads</td>
254
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">32</td>
255
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
256
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">16</td>
257
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">24</td>
258
+ </tr>
259
+ <tr>
260
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">Number of KV heads</td>
261
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">8</td>
262
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
263
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
264
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
265
+ </tr>
266
+ <tr>
267
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">MLP hidden size</td>
268
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">8192</td>
269
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">12800</td>
270
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">512</td>
271
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">512</td>
272
+ </tr>
273
+ <tr>
274
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">MLP activation</td>
275
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">SwiGLU</td>
276
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
277
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
278
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
279
+ </tr>
280
+ <tr>
281
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">Number of experts</td>
282
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">β€”</td>
283
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">β€”</td>
284
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
285
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
286
+ </tr>
287
+ <tr>
288
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">MoE TopK</td>
289
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">β€”</td>
290
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">β€”</td>
291
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
292
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
293
+ </tr>
294
+ <tr>
295
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">Initialization std</td>
296
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">0.1</td>
297
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
298
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
299
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
300
+ </tr>
301
+ <tr>
302
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">Sequence length</td>
303
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">128K</td>
304
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
305
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
306
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
307
+ </tr>
308
+ <tr>
309
+ <td style="text-align:left; background-color: #FFFFFF; color: black;">Position embedding</td>
310
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">RoPE</td>
311
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
312
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
313
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
314
+ </tr>
315
+ <tr>
316
+ <td style="text-align:left; background-color: #FFFFFF; color: black;"># Parameters</td>
317
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">2.5B</td>
318
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">8.1B</td>
319
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">1.3B</td>
320
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">3.3B</td>
321
+ </tr>
322
+ <tr>
323
+ <td style="text-align:left; background-color: #FFFFFF; color: black;"># Active parameters</td>
324
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">2.5B</td>
325
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">8.1B</td>
326
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">400M</td>
327
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">800M</td>
328
+ </tr>
329
+ <tr>
330
+ <td style="text-align:left; background-color: #FFFFFF; color: black;"># Training tokens</td>
331
+ <td style="text-align:center; background-color: #DAE8FF; color: black;">12T</td>
332
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">12T</td>
333
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">10T</td>
334
+ <td style="text-align:center; background-color: #FFFFFF; color: black;">10T</td>
335
+ </tr>
336
+ </tbody></table>
337
+
338
+ **Training Data:**
339
+ Overall, our SFT data is largely comprised of three key sources: (1) publicly available datasets with permissive license, (2) internal synthetic data targeting specific capabilities including long-context tasks, and (3) very small amounts of human-curated data. A detailed attribution of datasets can be found in the [Granite 3.0 Technical Report](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/paper.pdf), [Granite 3.1 Technical Report (coming soon)](https://huggingface.co/collections/ibm-granite/granite-31-language-models-6751dbbf2f3389bec5c6f02d), and [Accompanying Author List](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/author-ack.pdf).
340
+
341
+ **Infrastructure:**
342
+ We train Granite 3.1 Language Models using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs.
343
+
344
+ **Ethical Considerations and Limitations:**
345
+ Granite 3.1 Instruct Models are primarily finetuned using instruction-response pairs mostly in English, but also multilingual data covering eleven languages. Although this model can handle multilingual dialog use cases, its performance might not be similar to English tasks. In such case, introducing a small number of examples (few-shot) can help the model in generating more accurate outputs. While this model has been aligned by keeping safety in consideration, the model may in some cases produce inaccurate, biased, or unsafe responses to user prompts. So we urge the community to use this model with proper safety testing and tuning tailored for their specific tasks.
346
+
347
+ **Resources**
348
+ - ⭐️ Learn about the latest updates with Granite: https://www.ibm.com/granite
349
+ - πŸ“„ Get started with tutorials, best practices, and prompt engineering advice: https://www.ibm.com/granite/docs/
350
+ - πŸ’‘ Learn about the latest Granite learning resources: https://ibm.biz/granite-learning-resources
351
+
352
+ <!-- ## Citation
353
+ ```
354
+ @misc{granite-models,
355
+ author = {author 1, author2, ...},
356
+ title = {},
357
+ journal = {},
358
+ volume = {},
359
+ year = {2024},
360
+ url = {https://arxiv.org/abs/0000.00000},
361
+ }
362
+ ``` -->
363
+
364
+ <!--End Original Model Card-->
365
+
366
+ ---
367
+
368
+ # <span id="testllm" style="color: #7F7FFF;">πŸš€ If you find these models useful</span>
369
+
370
+ Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**:
371
+
372
+ πŸ‘‰ [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)
373
+
374
+
375
+ The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder)
376
+
377
+ πŸ’¬ **How to test**:
378
+ Choose an **AI assistant type**:
379
+ - `TurboLLM` (GPT-4.1-mini)
380
+ - `HugLLM` (Hugginface Open-source models)
381
+ - `TestLLM` (Experimental CPU-only)
382
+
383
+ ### **What I’m Testing**
384
+ I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:
385
+ - **Function calling** against live network services
386
+ - **How small can a model go** while still handling:
387
+ - Automated **Nmap security scans**
388
+ - **Quantum-readiness checks**
389
+ - **Network Monitoring tasks**
390
+
391
+ 🟑 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space):
392
+ - βœ… **Zero-configuration setup**
393
+ - ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low.
394
+ - πŸ”§ **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!
395
+
396
+ ### **Other Assistants**
397
+ 🟒 **TurboLLM** – Uses **gpt-4.1-mini** :
398
+ - **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited.
399
+ - **Create custom cmd processors to run .net code on Quantum Network Monitor Agents**
400
+ - **Real-time network diagnostics and monitoring**
401
+ - **Security Audits**
402
+ - **Penetration testing** (Nmap/Metasploit)
403
+
404
+ πŸ”΅ **HugLLM** – Latest Open-source models:
405
+ - 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita.
406
+
407
+ ### πŸ’‘ **Example commands you could test**:
408
+ 1. `"Give me info on my websites SSL certificate"`
409
+ 2. `"Check if my server is using quantum safe encyption for communication"`
410
+ 3. `"Run a comprehensive security audit on my server"`
411
+ 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a [Quantum Network Monitor Agent](https://readyforquantum.com/Download/?utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) to run the .net code on. This is a very flexible and powerful feature. Use with caution!
412
+
413
+ ### Final Word
414
+
415
+ I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAIβ€”all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.
416
+
417
+ If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) β˜•. Your support helps cover service costs and allows me to raise token limits for everyone.
418
+
419
+ I'm also open to job opportunities or sponsorship.
420
+
421
+ Thank you! 😊