---
license_name: qwen-research
license_link: https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct/blob/main/LICENSE
language:
- en
pipeline_tag: image-text-to-text
tags:
- multimodal
library_name: transformers
---
# Qwen2.5-VL-3B-Instruct GGUF Models
These files have been built using a imatrix file and latest llama.cpp build. You must use a fork of llama.cpp to run use vision with the model.
## How to Use Qwen 2.5 VL Instruct with llama.cpp
To utilize the experimental support for Qwen 2.5 VL in `llama.cpp`, follow these steps:
Note this uses a fork of llama.cpp. At this time the main branch does not support vision for this model
1. **Clone the lastest llama.cpp Fork**:
```bash
git clone https://github.com/HimariO/llama.cpp.qwen2vl.git
git checkout qwen25-vl
cd llama.cpp
```
2. **Build the Llama.cpp**:
Build llama.cpp as usual : https://github.com/ggml-org/llama.cpp#building-the-project
Once llama.cpp is built Copy the ./llama.cpp/build/bin/llama-qwen2-vl-cli to a chosen folder.
3. **Download the Qwen 2.5 VL gguf file**:
https://huggingface.co/Mungert/Qwen2.5-VL-3B-Instruct-GGUF/tree/main
Choose a gguf file without the mmproj in the name
Example gguf file : https://huggingface.co/Mungert/Mungert/Qwen2.5-VL-3B-Instruct-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct-q8_0.gguf
Copy this file to your chosen folder.
4. **Download the Qwen 2.5 VL mmproj file**
https://huggingface.co/Mungert/Qwen2.5-VL-3B-Instruct-GGUF/tree/main
Choose a file with mmproj in the name
Example mmproj file : https://huggingface.co/Mungert/Qwen2.5-VL-3B-Instruct-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct-mmproj-f16.gguf
Copy this file to your chosen folder.
5. Copy images to the same folder as the gguf files or alter paths appropriately.
In the example below the gguf files, images and llama-qwen2vl-cli are in the same folder.
Example image: image https://huggingface.co/Mungert/Qwen2.5-VL-3B-Instruct-GGUF/resolve/main/car-1.jpg
Copy this file to your chosen folder.
6. **Run the CLI Tool**:
From your chosen folder :
```bash
llama-qwen2vl-cli -m Qwen2.5-VL-3B-Instruct-q8_0.gguf --mmproj Qwen2.5-VL-3B-Instruct-mmproj-f16.gguf -p "Describe this image." --image ./car-1.jpg
```
```
## **Choosing the Right Model Format**
Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**.
### **BF16 (Brain Float 16) β Use if BF16 acceleration is available**
- A 16-bit floating-point format designed for **faster computation** while retaining good precision.
- Provides **similar dynamic range** as FP32 but with **lower memory usage**.
- Recommended if your hardware supports **BF16 acceleration** (check your deviceβs specs).
- Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32.
π **Use BF16 if:**
β Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs).
β You want **higher precision** while saving memory.
β You plan to **requantize** the model into another format.
π **Avoid BF16 if:**
β Your hardware does **not** support BF16 (it may fall back to FP32 and run slower).
β You need compatibility with older devices that lack BF16 optimization.
---
### **F16 (Float 16) β More widely supported than BF16**
- A 16-bit floating-point **high precision** but with less of range of values than BF16.
- Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs).
- Slightly lower numerical precision than BF16 but generally sufficient for inference.
π **Use F16 if:**
β Your hardware supports **FP16** but **not BF16**.
β You need a **balance between speed, memory usage, and accuracy**.
β You are running on a **GPU** or another device optimized for FP16 computations.
π **Avoid F16 if:**
β Your device lacks **native FP16 support** (it may run slower than expected).
β You have memory limitations.
---
### **Quantized Models (Q4_K, Q6_K, Q8, etc.) β For CPU & Low-VRAM Inference**
Quantization reduces model size and memory usage while maintaining as much accuracy as possible.
- **Lower-bit models (Q4_K)** β **Best for minimal memory usage**, may have lower precision.
- **Higher-bit models (Q6_K, Q8_0)** β **Better accuracy**, requires more memory.
π **Use Quantized Models if:**
β You are running inference on a **CPU** and need an optimized model.
β Your device has **low VRAM** and cannot load full-precision models.
β You want to reduce **memory footprint** while keeping reasonable accuracy.
π **Avoid Quantized Models if:**
β You need **maximum accuracy** (full-precision models are better for this).
β Your hardware has enough VRAM for higher-precision formats (BF16/F16).
---
### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)**
These models are optimized for **extreme memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint.
- **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **extreme memory efficiency**.
- **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large.
- **Trade-off**: Lower accuracy compared to higher-bit quantizations.
- **IQ3_S**: Small block size for **maximum memory efficiency**.
- **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive.
- **IQ3_M**: Medium block size for better accuracy than **IQ3_S**.
- **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting.
- **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy.
- **Use case**: Best for **low-memory devices** where **Q6_K** is too large.
- **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**.
- **Use case**: Best for **ARM-based devices** or **low-memory environments**.
---
### **Summary Table: Model Format Selection**
| Model Format | Precision | Memory Usage | Device Requirements | Best Use Case |
|--------------|------------|---------------|----------------------|---------------|
| **BF16** | Highest | High | BF16-supported GPU/CPUs | High-speed inference with reduced memory |
| **F16** | High | High | FP16-supported devices | GPU inference when BF16 isnβt available |
| **Q4_K** | Medium Low | Low | CPU or Low-VRAM devices | Best for memory-constrained environments |
| **Q6_K** | Medium | Moderate | CPU with more memory | Better accuracy while still being quantized |
| **Q8_0** | High | Moderate | CPU or GPU with enough VRAM | Best accuracy among quantized models |
| **IQ3_XS** | Very Low | Very Low | Ultra-low-memory devices | Extreme memory efficiency and low accuracy |
| **Q4_0** | Low | Low | ARM or low-memory devices | llama.cpp can optimize for ARM devices |
---
## **Included Files & Details**
### `Qwen2.5-VL-3B-Instruct-bf16.gguf`
- Model weights preserved in **BF16**.
- Use this if you want to **requantize** the model into a different format.
- Best if your device supports **BF16 acceleration**.
### `Qwen2.5-VL-3B-Instruct-f16.gguf`
- Model weights stored in **F16**.
- Use if your device supports **FP16**, especially if BF16 is not available.
### `Qwen2.5-VL-3B-Instruct-bf16-q8_0.gguf`
- **Output & embeddings** remain in **BF16**.
- All other layers quantized to **Q8_0**.
- Use if your device supports **BF16** and you want a quantized version.
### `Qwen2.5-VL-3B-Instruct-f16-q8_0.gguf`
- **Output & embeddings** remain in **F16**.
- All other layers quantized to **Q8_0**.
### `Qwen2.5-VL-3B-Instruct-q4_k.gguf`
- **Output & embeddings** quantized to **Q8_0**.
- All other layers quantized to **Q4_K**.
- Good for **CPU inference** with limited memory.
### `Qwen2.5-VL-3B-Instruct-q4_k_s.gguf`
- Smallest **Q4_K** variant, using less memory at the cost of accuracy.
- Best for **very low-memory setups**.
### `Qwen2.5-VL-3B-Instruct-q6_k.gguf`
- **Output & embeddings** quantized to **Q8_0**.
- All other layers quantized to **Q6_K** .
### `Qwen2.5-VL-3B-Instruct-q8_0.gguf`
- Fully **Q8** quantized model for better accuracy.
- Requires **more memory** but offers higher precision.
### `Qwen2.5-VL-3B-Instruct-iq3_xs.gguf`
- **IQ3_XS** quantization, optimized for **extreme memory efficiency**.
- Best for **ultra-low-memory devices**.
### `Qwen2.5-VL-3B-Instruct-iq3_m.gguf`
- **IQ3_M** quantization, offering a **medium block size** for better accuracy.
- Suitable for **low-memory devices**.
### `Qwen2.5-VL-3B-Instruct-q4_0.gguf`
- Pure **Q4_0** quantization, optimized for **ARM devices**.
- Best for **low-memory environments**.
- Prefer IQ4_NL for better accuracy.
# π If you find these models useful
Please click like β€ . Also Iβd really appreciate it if you could test my Network Monitor Assistant at π [Network Monitor Assitant](https://freenetworkmonitor.click/dashboard).
π¬ Click the **chat icon** (bottom right of the main and dashboard pages) . Choose a LLM; toggle between the LLM Types TurboLLM -> FreeLLM -> TestLLM.
### What I'm Testing
I'm experimenting with **function calling** against my network monitoring service. Using small open source models. I am into the question "How small can it go and still function".
π‘ **TestLLM** β Runs the current testing model using llama.cpp on 6 threads of a Cpu VM (Should take about 15s to load. Inference speed is quite slow and it only processes one user prompt at a timeβstill working on scaling!). If you're curious, I'd be happy to share how it works! .
### The other Available AI Assistants
π’ **TurboLLM** β Uses **gpt-4o-mini** Fast! . Note: tokens are limited since OpenAI models are pricey, but you can [Login](https://freenetworkmonitor.click) or [Download](https://freenetworkmonitor.click/download) the Free Network Monitor agent to get more tokens, Alternatively use the TestLLM .
π΅ **HugLLM** β Runs **open-source Hugging Face models** Fast, Runs small models (β8B) hence lower quality, Get 2x more tokens (subject to Hugging Face API availability)
# Qwen2.5-VL-3B-Instruct
## Introduction
In the past five months since Qwen2-VLβs release, numerous developers have built new models on the Qwen2-VL vision-language models, providing us with valuable feedback. During this period, we focused on building more useful vision-language models. Today, we are excited to introduce the latest addition to the Qwen family: Qwen2.5-VL.
#### Key Enhancements:
* **Understand things visually**: Qwen2.5-VL is not only proficient in recognizing common objects such as flowers, birds, fish, and insects, but it is highly capable of analyzing texts, charts, icons, graphics, and layouts within images.
* **Being agentic**: Qwen2.5-VL directly plays as a visual agent that can reason and dynamically direct tools, which is capable of computer use and phone use.
* **Understanding long videos and capturing events**: Qwen2.5-VL can comprehend videos of over 1 hour, and this time it has a new ability of cpaturing event by pinpointing the relevant video segments.
* **Capable of visual localization in different formats**: Qwen2.5-VL can accurately localize objects in an image by generating bounding boxes or points, and it can provide stable JSON outputs for coordinates and attributes.
* **Generating structured outputs**: for data like scans of invoices, forms, tables, etc. Qwen2.5-VL supports structured outputs of their contents, benefiting usages in finance, commerce, etc.
#### Model Architecture Updates:
* **Dynamic Resolution and Frame Rate Training for Video Understanding**:
We extend dynamic resolution to the temporal dimension by adopting dynamic FPS sampling, enabling the model to comprehend videos at various sampling rates. Accordingly, we update mRoPE in the time dimension with IDs and absolute time alignment, enabling the model to learn temporal sequence and speed, and ultimately acquire the ability to pinpoint specific moments.
* **Streamlined and Efficient Vision Encoder**
We enhance both training and inference speeds by strategically implementing window attention into the ViT. The ViT architecture is further optimized with SwiGLU and RMSNorm, aligning it with the structure of the Qwen2.5 LLM.
We have three models with 3, 7 and 72 billion parameters. This repo contains the instruction-tuned 3B Qwen2.5-VL model. For more information, visit our [Blog](https://qwenlm.github.io/blog/qwen2.5-vl/) and [GitHub](https://github.com/QwenLM/Qwen2.5-VL).
## Evaluation
### Image benchmark
| Benchmark | InternVL2.5-4B |Qwen2-VL-7B |Qwen2.5-VL-3B |
| :--- | :---: | :---: | :---: |
| MMMUval | 52.3 | 54.1 | 53.1|
| MMMU-Proval | **32.7** | 30.5 | 31.6|
| AI2Dtest | 81.4 | **83.0** | 81.5 |
| DocVQAtest | 91.6 | 94.5 | **93.9** |
| InfoVQAtest | 72.1 | 76.5 | **77.1** |
| TextVQAval | 76.8 | **84.3** | 79.3|
| MMBench-V1.1test | 79.3 | **80.7** | 77.6 |
| MMStar | 58.3 | **60.7** | 55.9 |
| MathVistatestmini | 60.5 | 58.2 | **62.3** |
| MathVisionfull | 20.9 | 16.3 | **21.2** |
### Video benchmark
| Benchmark | InternVL2.5-4B | Qwen2-VL-7B | Qwen2.5-VL-3B |
| :--- | :---: | :---: | :---: |
| MVBench | 71.6 | 67.0 | 67.0 |
| VideoMME | 63.6/62.3 | 69.0/63.3 | 67.6/61.5 |
| MLVU | 48.3 | - | 68.2 |
| LVBench | - | - | 43.3 |
| MMBench-Video | 1.73 | 1.44 | 1.63 |
| EgoSchema | - | - | 64.8 |
| PerceptionTest | - | - | 66.9 |
| TempCompass | - | - | 64.4 |
| LongVideoBench | 55.2 | 55.6 | 54.2 |
| CharadesSTA/mIoU | - | - | 38.8 |
### Agent benchmark
| Benchmarks | Qwen2.5-VL-3B |
|-------------------------|---------------|
| ScreenSpot | 55.5 |
| ScreenSpot Pro | 23.9 |
| AITZ_EM | 76.9 |
| Android Control High_EM | 63.7 |
| Android Control Low_EM | 22.2 |
| AndroidWorld_SR | 90.8 |
| MobileMiniWob++_SR | 67.9 |
## Requirements
The code of Qwen2.5-VL has been in the latest Hugging face transformers and we advise you to build from source with command:
```
pip install git+https://github.com/huggingface/transformers accelerate
```
or you might encounter the following error:
```
KeyError: 'qwen2_5_vl'
```
## Quickstart
Below, we provide simple examples to show how to use Qwen2.5-VL with π€ ModelScope and π€ Transformers.
The code of Qwen2.5-VL has been in the latest Hugging face transformers and we advise you to build from source with command:
```
pip install git+https://github.com/huggingface/transformers accelerate
```
or you might encounter the following error:
```
KeyError: 'qwen2_5_vl'
```
We offer a toolkit to help you handle various types of visual input more conveniently, as if you were using an API. This includes base64, URLs, and interleaved images and videos. You can install it using the following command:
```bash
# It's highly recommanded to use `[decord]` feature for faster video loading.
pip install qwen-vl-utils[decord]==0.0.8
```
If you are not using Linux, you might not be able to install `decord` from PyPI. In that case, you can use `pip install qwen-vl-utils` which will fall back to using torchvision for video processing. However, you can still [install decord from source](https://github.com/dmlc/decord?tab=readme-ov-file#install-from-source) to get decord used when loading video.
### Using π€ Transformers to Chat
Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_vl_utils`:
```python
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
# default: Load the model on the available device(s)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-3B-Instruct", torch_dtype="auto", device_map="auto"
)
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
# "Qwen/Qwen2.5-VL-3B-Instruct",
# torch_dtype=torch.bfloat16,
# attn_implementation="flash_attention_2",
# device_map="auto",
# )
# default processer
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct")
# The default range for the number of visual tokens per image in the model is 4-16384.
# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
# min_pixels = 256*28*28
# max_pixels = 1280*28*28
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```
Multi image inference
```python
# Messages containing multiple images and a text query
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": "file:///path/to/image1.jpg"},
{"type": "image", "image": "file:///path/to/image2.jpg"},
{"type": "text", "text": "Identify the similarities between these images."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```
Video inference
```python
# Messages containing a images list as a video and a text query
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": [
"file:///path/to/frame1.jpg",
"file:///path/to/frame2.jpg",
"file:///path/to/frame3.jpg",
"file:///path/to/frame4.jpg",
],
},
{"type": "text", "text": "Describe this video."},
],
}
]
# Messages containing a local video path and a text query
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": "file:///path/to/video1.mp4",
"max_pixels": 360 * 420,
"fps": 1.0,
},
{"type": "text", "text": "Describe this video."},
],
}
]
# Messages containing a video url and a text query
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-VL/space_woaudio.mp4",
},
{"type": "text", "text": "Describe this video."},
],
}
]
#In Qwen 2.5 VL, frame rate information is also input into the model to align with absolute time.
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
fps=fps,
padding=True,
return_tensors="pt",
**video_kwargs,
)
inputs = inputs.to("cuda")
# Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```
Video URL compatibility largely depends on the third-party library version. The details are in the table below. change the backend by `FORCE_QWENVL_VIDEO_READER=torchvision` or `FORCE_QWENVL_VIDEO_READER=decord` if you prefer not to use the default one.
| Backend | HTTP | HTTPS |
|-------------|------|-------|
| torchvision >= 0.19.0 | β
| β
|
| torchvision < 0.19.0 | β | β |
| decord | β
| β |
Batch inference
```python
# Sample messages for batch inference
messages1 = [
{
"role": "user",
"content": [
{"type": "image", "image": "file:///path/to/image1.jpg"},
{"type": "image", "image": "file:///path/to/image2.jpg"},
{"type": "text", "text": "What are the common elements in these pictures?"},
],
}
]
messages2 = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who are you?"},
]
# Combine messages for batch processing
messages = [messages1, messages2]
# Preparation for batch inference
texts = [
processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
for msg in messages
]
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=texts,
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Batch Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_texts = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_texts)
```