Mungert commited on
Commit
21e4e6b
·
verified ·
1 Parent(s): f4e28f6

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +708 -0
README.md ADDED
@@ -0,0 +1,708 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ thumbnail: >-
3
+ https://huggingface.co/PocketDoc/Dans-PersonalityEngine-V1.3.0-24b/resolve/main/resources/pe.png
4
+ license: apache-2.0
5
+ tags:
6
+ - general-purpose
7
+ - roleplay
8
+ - storywriting
9
+ - chemistry
10
+ - biology
11
+ - code
12
+ - climate
13
+ - axolotl
14
+ - text-generation-inference
15
+ - finetune
16
+ - legal
17
+ - medical
18
+ - finance
19
+ datasets:
20
+ - PocketDoc/Dans-Prosemaxx-RP
21
+ - PocketDoc/Dans-Personamaxx-Logs-2
22
+ - PocketDoc/Dans-Personamaxx-VN
23
+ - PocketDoc/Dans-Kinomaxx-VanillaBackrooms
24
+ - PocketDoc/Dans-Prosemaxx-Gutenberg
25
+ - PocketDoc/Dans-Prosemaxx-Cowriter-3-XL
26
+ - PocketDoc/Dans-Prosemaxx-Adventure
27
+ - PocketDoc/Dans-Failuremaxx-Adventure-3
28
+ - PocketDoc/Dans-Prosemaxx-InstructWriter-ZeroShot-2
29
+ - PocketDoc/Dans-Prosemaxx-InstructWriter-ZeroShot-3
30
+ - PocketDoc/Dans-Prosemaxx-InstructWriter-Continue-2
31
+ - PocketDoc/Dans-Prosemaxx-Instructwriter-Long
32
+ - PocketDoc/Dans-Prosemaxx-RepRemover-1
33
+ - PocketDoc/Dans-MemoryCore-CoreCurriculum-Small
34
+ - AquaV/US-Army-Survival-Sharegpt
35
+ - AquaV/Multi-Environment-Operations-Sharegpt
36
+ - AquaV/Resistance-Sharegpt
37
+ - AquaV/Interrogation-Sharegpt
38
+ - AquaV/Chemical-Biological-Safety-Applications-Sharegpt
39
+ - AquaV/Energetic-Materials-Sharegpt
40
+ - PocketDoc/Dans-Mathmaxx
41
+ - PJMixers/Math-Multiturn-1K-ShareGPT
42
+ - PocketDoc/Dans-Taskmaxx
43
+ - PocketDoc/Dans-Taskmaxx-DataPrepper
44
+ - PocketDoc/Dans-Taskmaxx-ConcurrentQA-Reworked
45
+ - PocketDoc/Dans-Taskmaxx-TableGPT
46
+ - PocketDoc/Dans-Taskmaxx-SciRIFF
47
+ - PocketDoc/Dans-Taskmaxx-Edit
48
+ - PocketDoc/Dans-Toolmaxx-Agent
49
+ - PocketDoc/Dans-Toolmaxx-ShellCommands
50
+ - PocketDoc/Dans-Toolmaxx-Functions-Toolbench
51
+ - PocketDoc/Dans-Toolmaxx-Functions-ToolACE
52
+ - PocketDoc/Dans-Toolmaxx-Functions-apigen-subset
53
+ - PocketDoc/Dans-Assistantmaxx-OpenAssistant2
54
+ - PocketDoc/Dans-Assistantmaxx-Opus-Merge-2
55
+ - PocketDoc/Dans-Assistantmaxx-sonnetorca-subset
56
+ - PocketDoc/Dans-Assistantmaxx-sonnetorca-subset-2
57
+ - PocketDoc/Dans-Assistantmaxx-Synthia
58
+ - PocketDoc/Dans-Assistantmaxx-ASL
59
+ - PocketDoc/Dans-Assistantmaxx-PersonaLLM-Opus
60
+ - PocketDoc/Dans-Assistantmaxx-LongAlign
61
+ - PocketDoc/Dans-Assistantmaxx-OpenLeecher-Instruct
62
+ - PocketDoc/Dans-Assistantmaxx-Tulu3-IF
63
+ - PocketDoc/Dans-Systemmaxx
64
+ - PocketDoc/Dans-Logicmaxx-SAT-AP
65
+ - PJMixers/grimulkan_theory-of-mind-ShareGPT
66
+ - PJMixers/grimulkan_physical-reasoning-ShareGPT
67
+ - PocketDoc/Dans-Reasoningmaxx-NaturalReasoning
68
+ - PocketDoc/Dans-Reasoningmaxx-WebInstruct
69
+ - PocketDoc/Dans-Reasoningmaxx-GeneralReasoning
70
+ - PocketDoc/Dans-Assistantmaxx-ClosedInstruct
71
+ language:
72
+ - en
73
+ - ar
74
+ - de
75
+ - fr
76
+ - es
77
+ - hi
78
+ - pt
79
+ - ja
80
+ - ko
81
+ base_model:
82
+ - mistralai/Mistral-Small-3.1-24B-Base-2503
83
+ pipeline_tag: text-generation
84
+ library_name: transformers
85
+ ---
86
+
87
+ # <span style="color: #7FFF7F;">Dans-PersonalityEngine-V1.3.0-24b GGUF Models</span>
88
+
89
+
90
+ ## <span style="color: #7F7FFF;">Model Generation Details</span>
91
+
92
+ This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`f5cd27b7`](https://github.com/ggerganov/llama.cpp/commit/f5cd27b71da3ac375a04a41643d14fc779a8057b).
93
+
94
+
95
+
96
+
97
+ ## <span style="color: #7FFF7F;">Ultra-Low-Bit Quantization with IQ-DynamicGate (1-2 bit)</span>
98
+
99
+ Our latest quantization method introduces **precision-adaptive quantization** for ultra-low-bit models (1-2 bit), with benchmark-proven improvements on **Llama-3-8B**. This approach uses layer-specific strategies to preserve accuracy while maintaining extreme memory efficiency.
100
+
101
+ ### **Benchmark Context**
102
+ All tests conducted on **Llama-3-8B-Instruct** using:
103
+ - Standard perplexity evaluation pipeline
104
+ - 2048-token context window
105
+ - Same prompt set across all quantizations
106
+
107
+ ### **Method**
108
+ - **Dynamic Precision Allocation**:
109
+ - First/Last 25% of layers → IQ4_XS (selected layers)
110
+ - Middle 50% → IQ2_XXS/IQ3_S (increase efficiency)
111
+ - **Critical Component Protection**:
112
+ - Embeddings/output layers use Q5_K
113
+ - Reduces error propagation by 38% vs standard 1-2bit
114
+
115
+ ### **Quantization Performance Comparison (Llama-3-8B)**
116
+
117
+ | Quantization | Standard PPL | DynamicGate PPL | Δ PPL | Std Size | DG Size | Δ Size | Std Speed | DG Speed |
118
+ |--------------|--------------|------------------|---------|----------|---------|--------|-----------|----------|
119
+ | IQ2_XXS | 11.30 | 9.84 | -12.9% | 2.5G | 2.6G | +0.1G | 234s | 246s |
120
+ | IQ2_XS | 11.72 | 11.63 | -0.8% | 2.7G | 2.8G | +0.1G | 242s | 246s |
121
+ | IQ2_S | 14.31 | 9.02 | -36.9% | 2.7G | 2.9G | +0.2G | 238s | 244s |
122
+ | IQ1_M | 27.46 | 15.41 | -43.9% | 2.2G | 2.5G | +0.3G | 206s | 212s |
123
+ | IQ1_S | 53.07 | 32.00 | -39.7% | 2.1G | 2.4G | +0.3G | 184s | 209s |
124
+
125
+ **Key**:
126
+ - PPL = Perplexity (lower is better)
127
+ - Δ PPL = Percentage change from standard to DynamicGate
128
+ - Speed = Inference time (CPU avx2, 2048 token context)
129
+ - Size differences reflect mixed quantization overhead
130
+
131
+ **Key Improvements:**
132
+ - 🔥 **IQ1_M** shows massive 43.9% perplexity reduction (27.46 → 15.41)
133
+ - 🚀 **IQ2_S** cuts perplexity by 36.9% while adding only 0.2GB
134
+ - ⚡ **IQ1_S** maintains 39.7% better accuracy despite 1-bit quantization
135
+
136
+ **Tradeoffs:**
137
+ - All variants have modest size increases (0.1-0.3GB)
138
+ - Inference speeds remain comparable (<5% difference)
139
+
140
+
141
+ ### **When to Use These Models**
142
+ 📌 **Fitting models into GPU VRAM**
143
+
144
+ ✔ **Memory-constrained deployments**
145
+
146
+ ✔ **Cpu and Edge Devices** where 1-2bit errors can be tolerated
147
+
148
+ ✔ **Research** into ultra-low-bit quantization
149
+
150
+
151
+
152
+ ## **Choosing the Right Model Format**
153
+
154
+ Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**.
155
+
156
+ ### **BF16 (Brain Float 16) – Use if BF16 acceleration is available**
157
+ - A 16-bit floating-point format designed for **faster computation** while retaining good precision.
158
+ - Provides **similar dynamic range** as FP32 but with **lower memory usage**.
159
+ - Recommended if your hardware supports **BF16 acceleration** (check your device's specs).
160
+ - Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32.
161
+
162
+ 📌 **Use BF16 if:**
163
+ ✔ Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs).
164
+ ✔ You want **higher precision** while saving memory.
165
+ ✔ You plan to **requantize** the model into another format.
166
+
167
+ 📌 **Avoid BF16 if:**
168
+ ❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower).
169
+ ❌ You need compatibility with older devices that lack BF16 optimization.
170
+
171
+ ---
172
+
173
+ ### **F16 (Float 16) – More widely supported than BF16**
174
+ - A 16-bit floating-point **high precision** but with less of range of values than BF16.
175
+ - Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs).
176
+ - Slightly lower numerical precision than BF16 but generally sufficient for inference.
177
+
178
+ 📌 **Use F16 if:**
179
+ ✔ Your hardware supports **FP16** but **not BF16**.
180
+ ✔ You need a **balance between speed, memory usage, and accuracy**.
181
+ ✔ You are running on a **GPU** or another device optimized for FP16 computations.
182
+
183
+ 📌 **Avoid F16 if:**
184
+ ❌ Your device lacks **native FP16 support** (it may run slower than expected).
185
+ ❌ You have memory limitations.
186
+
187
+ ---
188
+
189
+ ### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference**
190
+ Quantization reduces model size and memory usage while maintaining as much accuracy as possible.
191
+ - **Lower-bit models (Q4_K)** → **Best for minimal memory usage**, may have lower precision.
192
+ - **Higher-bit models (Q6_K, Q8_0)** → **Better accuracy**, requires more memory.
193
+
194
+ 📌 **Use Quantized Models if:**
195
+ ✔ You are running inference on a **CPU** and need an optimized model.
196
+ ✔ Your device has **low VRAM** and cannot load full-precision models.
197
+ ✔ You want to reduce **memory footprint** while keeping reasonable accuracy.
198
+
199
+ 📌 **Avoid Quantized Models if:**
200
+ ❌ You need **maximum accuracy** (full-precision models are better for this).
201
+ ❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16).
202
+
203
+ ---
204
+
205
+ ### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)**
206
+ These models are optimized for **extreme memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint.
207
+
208
+ - **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **extreme memory efficiency**.
209
+ - **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large.
210
+ - **Trade-off**: Lower accuracy compared to higher-bit quantizations.
211
+
212
+ - **IQ3_S**: Small block size for **maximum memory efficiency**.
213
+ - **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive.
214
+
215
+ - **IQ3_M**: Medium block size for better accuracy than **IQ3_S**.
216
+ - **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting.
217
+
218
+ - **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy.
219
+ - **Use case**: Best for **low-memory devices** where **Q6_K** is too large.
220
+
221
+ - **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**.
222
+ - **Use case**: Best for **ARM-based devices** or **low-memory environments**.
223
+
224
+ ---
225
+
226
+ ### **Summary Table: Model Format Selection**
227
+
228
+ | Model Format | Precision | Memory Usage | Device Requirements | Best Use Case |
229
+ |--------------|------------|---------------|----------------------|---------------|
230
+ | **BF16** | Highest | High | BF16-supported GPU/CPUs | High-speed inference with reduced memory |
231
+ | **F16** | High | High | FP16-supported devices | GPU inference when BF16 isn't available |
232
+ | **Q4_K** | Medium Low | Low | CPU or Low-VRAM devices | Best for memory-constrained environments |
233
+ | **Q6_K** | Medium | Moderate | CPU with more memory | Better accuracy while still being quantized |
234
+ | **Q8_0** | High | Moderate | CPU or GPU with enough VRAM | Best accuracy among quantized models |
235
+ | **IQ3_XS** | Very Low | Very Low | Ultra-low-memory devices | Extreme memory efficiency and low accuracy |
236
+ | **Q4_0** | Low | Low | ARM or low-memory devices | llama.cpp can optimize for ARM devices |
237
+
238
+ ---
239
+
240
+ ## **Included Files & Details**
241
+
242
+ ### `Dans-PersonalityEngine-V1.3.0-24b-bf16.gguf`
243
+ - Model weights preserved in **BF16**.
244
+ - Use this if you want to **requantize** the model into a different format.
245
+ - Best if your device supports **BF16 acceleration**.
246
+
247
+ ### `Dans-PersonalityEngine-V1.3.0-24b-f16.gguf`
248
+ - Model weights stored in **F16**.
249
+ - Use if your device supports **FP16**, especially if BF16 is not available.
250
+
251
+ ### `Dans-PersonalityEngine-V1.3.0-24b-bf16-q8_0.gguf`
252
+ - **Output & embeddings** remain in **BF16**.
253
+ - All other layers quantized to **Q8_0**.
254
+ - Use if your device supports **BF16** and you want a quantized version.
255
+
256
+ ### `Dans-PersonalityEngine-V1.3.0-24b-f16-q8_0.gguf`
257
+ - **Output & embeddings** remain in **F16**.
258
+ - All other layers quantized to **Q8_0**.
259
+
260
+ ### `Dans-PersonalityEngine-V1.3.0-24b-q4_k.gguf`
261
+ - **Output & embeddings** quantized to **Q8_0**.
262
+ - All other layers quantized to **Q4_K**.
263
+ - Good for **CPU inference** with limited memory.
264
+
265
+ ### `Dans-PersonalityEngine-V1.3.0-24b-q4_k_s.gguf`
266
+ - Smallest **Q4_K** variant, using less memory at the cost of accuracy.
267
+ - Best for **very low-memory setups**.
268
+
269
+ ### `Dans-PersonalityEngine-V1.3.0-24b-q6_k.gguf`
270
+ - **Output & embeddings** quantized to **Q8_0**.
271
+ - All other layers quantized to **Q6_K** .
272
+
273
+ ### `Dans-PersonalityEngine-V1.3.0-24b-q8_0.gguf`
274
+ - Fully **Q8** quantized model for better accuracy.
275
+ - Requires **more memory** but offers higher precision.
276
+
277
+ ### `Dans-PersonalityEngine-V1.3.0-24b-iq3_xs.gguf`
278
+ - **IQ3_XS** quantization, optimized for **extreme memory efficiency**.
279
+ - Best for **ultra-low-memory devices**.
280
+
281
+ ### `Dans-PersonalityEngine-V1.3.0-24b-iq3_m.gguf`
282
+ - **IQ3_M** quantization, offering a **medium block size** for better accuracy.
283
+ - Suitable for **low-memory devices**.
284
+
285
+ ### `Dans-PersonalityEngine-V1.3.0-24b-q4_0.gguf`
286
+ - Pure **Q4_0** quantization, optimized for **ARM devices**.
287
+ - Best for **low-memory environments**.
288
+ - Prefer IQ4_NL for better accuracy.
289
+
290
+ # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
291
+ ❤ **Please click "Like" if you find this useful!**
292
+ Help me test my **AI-Powered Network Monitor Assistant** with **quantum-ready security checks**:
293
+ 👉 [Free Network Monitor](https://readyforquantum.com/dashboard/?assistant=open)
294
+
295
+ 💬 **How to test**:
296
+ Choose an **AI assistant type**:
297
+ - `TurboLLM` (GPT-4o-mini)
298
+ - `HugLLM` (Hugginface Open-source)
299
+ - `TestLLM` (Experimental CPU-only)
300
+
301
+ ### **What I’m Testing**
302
+ I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:
303
+ - **Function calling** against live network services
304
+ - **How small can a model go** while still handling:
305
+ - Automated **Nmap scans**
306
+ - **Quantum-readiness checks**
307
+ - **Network Monitoring tasks**
308
+
309
+ 🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads):
310
+ - ✅ **Zero-configuration setup**
311
+ - ⏳ 30s load time (slow inference but **no API costs**)
312
+ - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!
313
+
314
+ ### **Other Assistants**
315
+ 🟢 **TurboLLM** – Uses **gpt-4o-mini** for:
316
+ - **Create custom cmd processors to run .net code on Free Network Monitor Agents**
317
+ - **Real-time network diagnostics and monitoring**
318
+ - **Security Audits**
319
+ - **Penetration testing** (Nmap/Metasploit)
320
+ - 🔑 Get more tokens by logging in or [downloading our Free Network Monitor Agent with integrated AI Assistant](https://readyforquantum.com/download)
321
+
322
+ 🔵 **HugLLM** – Latest Open-source models:
323
+ - 🌐 Runs on Hugging Face Inference API
324
+
325
+ ### 💡 **Example commands to you could test**:
326
+ 1. `"Give me info on my websites SSL certificate"`
327
+ 2. `"Check if my server is using quantum safe encyption for communication"`
328
+ 3. `"Run a comprehensive security audit on my server"`
329
+ 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Free Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution!
330
+
331
+
332
+ <!doctype html>
333
+ <html lang="en">
334
+ <head>
335
+ <meta charset="UTF-8" />
336
+ <meta name="viewport" content="width=device-width, initial-scale=1.0" />
337
+ <title>Dans-PersonalityEngine-V1.3.0-24b</title>
338
+ </head>
339
+ <div class="crt-container">
340
+ <div class="crt-case">
341
+ <div class="crt-inner-case">
342
+ <div class="crt-bezel">
343
+ <div class="terminal-screen">
344
+ <div style="text-align: center">
345
+ <h2>Dans-PersonalityEngine-V1.3.0-24b</h2>
346
+ <pre class="code-block" style="display: inline-block; text-align: left; font-size: clamp(2px, 0.8vw, 14px); line-height: 1.2; max-width: 100%; overflow: hidden; white-space: pre;">
347
+ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠀⠄⠀⡂⠀⠁⡄⢀⠁⢀⣈⡄⠌⠐⠠⠤⠄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀
348
+ ⠀⠀⠀⠀⠀⠀⠀⠀⡄⠆⠀⢠⠀⠛⣸⣄⣶⣾⡷⡾⠘⠃⢀⠀⣴⠀⡄⠰⢆⣠⠘⠰⠀⡀⠀⠀⠀⠀⠀
349
+ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠃⠀⡋⢀⣤⡿⠟⠋⠁⠀⡠⠤⢇⠋⠀⠈⠃⢀⠀⠈⡡⠤⠀⠀⠁⢄⠀⠀⠀⠀
350
+ ⠀⠀⠀⠀⠀⠁⡂⠀⠀⣀⣔⣧⠟⠋⠀⢀⡄⠀⠪⣀⡂⢁⠛⢆⠀⠀⠀⢎⢀⠄⢡⠢⠛⠠⡀⠀⠄⠀⠀
351
+ ⠀⠀⡀⠡⢑⠌⠈⣧⣮⢾⢏⠁⠀⠀⡀⠠⠦⠈⠀⠞⠑⠁⠀⠀⢧⡄⠈⡜⠷⠒⢸⡇⠐⠇⠿⠈⣖⠂⠀
352
+ ⠀⢌⠀⠤⠀⢠⣞⣾⡗⠁⠀⠈⠁⢨⡼⠀⠀⠀⢀⠀⣀⡤⣄⠄⠈⢻⡇⠀⠐⣠⠜⠑⠁⠀⣀⡔⡿⠨⡄
353
+ ⠈⠂⠀⠆⠀⣼⣾⠟⠀⠑⠀⡐⠗⠉⠀⠐⠶⣤⡵⠋⠀⠠⠹⡌⡀⠘⠇⢠⣾⡣⣀⡴⠋⠅⠈⢊⠠⡱⡀
354
+ ⠪⠑⢌⠂⣼⣿⡟⠀⠀⠙⠀⠀⠀⡀⠀⠀⠐⡞⡐⠀⠀⡧⠀⢀⠠⠀⣁⠾⡇⠀⠙⡁⠀⠀⢀⣨⣄⡠⢱
355
+ ⣸⠈⠊⠙⣛⣿⡧⠔⠚⠛⠳⣄⣀⡬⠤⠬⠼⡣⠃⠀⢀⡗⠀⡤⠞⠙⠄⠂⠃⢀⣠⣤⠶⠙⠅⠁⠃⠋⠈
356
+ ⢋⠼⣀⠰⢯⢿⠁⠀⢢⠀⠀⢐⠋⡀⠀⠈⠁⠀⣀⣰⠏⠒⠙⠈⠀⣀⡤⠞⢁⣼⠏⠘⢀⣀⢤⢤⡐⢈⠂
357
+ ⠀⠢⠀⠀⠸⣿⡄⠲⠚⠘⠚⠃⢀⠀⠈⢋⠶⠛⠉⠉⢃⣀⢤⢾⠋⣁⡤⡚⠁⢹⠁⠠⢛⠠⠬⠁⢬⠀⠀
358
+ ⠀⠈⢳⣒⠋⠉⣿⢐⠠⣀⣃⠀⠀⠉⠂⢁⣀⣀⡤⢞⠩⢑⡨⠰⡞⠁⠁⢀⡠⠾⠎⡈⡌⡈⡓⡀⠄⠀⠀
359
+ ⠀⠀⠀⠉⠘⠃⢻⡒⠦⢼⣿⣛⣻⣿⡷⢄⣀⣀⣠⣴⢾⣿⣆⣡⡄⣠⣪⡿⣷⣾⣷⣧⡡⠅⣇⠍⠀⠀⠀
360
+ ⠀⠀⠀⠀⠀⠀⠀⠙⠒⠒⠛⠛⠓⠉⢹⠀⣷⠴⣻⣽⡻⢧⢻⡿⡏⣼⢿⣻⢾⣿⣿⣿⡿⢠ ⠀⠀⠀⠀
361
+ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠂⠻⠨⠰⢋⡅⠉⣑⡇⡗⣿⢂⣸⡿⣿⣛⠿⠃⠁ ⠀⠀⠀⠀
362
+ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠳⣌⣙⣸⢧⣿⣕⣼⣇⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀
363
+ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣸⢧⢟⢟⡟⣾⠀⠀⠀⠀⠀⠀⠀⠀⠀
364
+ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢰⠙⣾⡟⣻⡕⣹⠀⠀⠀⠀⠀⠀⠀⠀⠀
365
+ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢸⢰⡏⢠⡿⠾⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀
366
+ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢸⠸⡇⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
367
+ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⢸⢸⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
368
+ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
369
+ </pre>
370
+ </div>
371
+ <p>
372
+ Dans-PersonalityEngine is a versatile model series
373
+ fine-tuned on 50+ specialized datasets, designed to
374
+ excel at both creative tasks (like roleplay and
375
+ co-writing) and technical challenges (such as code
376
+ generation, tool use, and complex reasoning).
377
+ </p>
378
+ <p>
379
+ V1.3.0 introduces multilingual capabilities with
380
+ support for 10 languages and enhanced domain
381
+ expertise across multiple fields. The primary
382
+ language is still English and that is where peak
383
+ performance can be expected.
384
+ </p>
385
+ <h3>Multilingual Support</h3>
386
+ <pre class="code-block">
387
+ Arabic Chinese English French German
388
+ Hindi Japanese Korean Portuguese Spanish</pre>
389
+ <h3>Key Details</h3>
390
+ <pre class="code-block">
391
+ BASE MODEL: mistralai/Mistral-Small-3.1-24B-Base-2503
392
+ LICENSE: apache-2.0
393
+ LANGUAGE: Multilingual with 10 supported languages
394
+ CONTEXT LENGTH: 32768 tokens, 131072 with degraded recall</pre>
395
+ <h3>Recommended Settings</h3>
396
+ <pre class="code-block">
397
+ TEMPERATURE: 1.0
398
+ TOP_P: 0.9</pre>
399
+ <h3>Prompting Format</h3>
400
+ <p>
401
+ The model uses the following format I'll refer to as
402
+ "DanChat-2":
403
+ </p>
404
+ <pre class="code-block">
405
+ <|system|>system prompt<|endoftext|><|user|>Hi there!<|endoftext|><|assistant|>Hey, how can I help?<|endoftext|></pre>
406
+ <h3>Why not ChatML?</h3>
407
+ <p>
408
+ While ChatML is a standard format for LLMs, it has
409
+ limitations. DanChat-2 uses special tokens
410
+ for each role, this reduces biases and helps the model adapt to different tasks more readily.
411
+ </p>
412
+ <h3>SillyTavern Template</h3>
413
+ <p>
414
+ <a
415
+ href="https://huggingface.co/PocketDoc/Dans-PersonalityEngine-V1.3.0-24b/resolve/main/resources/DanChat-2.json?download=true"
416
+ download
417
+ target="_blank"
418
+ rel="noopener noreferrer"
419
+ >
420
+ Download Master JSON
421
+ </a>
422
+ </p>
423
+ <h3>Inference Provider</h3>
424
+ <p>
425
+ This model and others are available from ⚡Mancer AI for
426
+ those interested in high quality inference without
427
+ owning or renting expensive hardware.
428
+ </p>
429
+ <p class="mancer-button-container">
430
+ <a
431
+ href="https://mancer.tech/"
432
+ target="_blank"
433
+ rel="noopener noreferrer"
434
+ class="mancer-button"
435
+ >
436
+ <span class="mancer-text">mancer</span>
437
+ </a>
438
+ </p>
439
+ <h3>Training Process</h3>
440
+ <p>
441
+ The model was trained using Axolotl on 8x H100 GPUs
442
+ for 50 hours. The resources to train this model were provided by Prime Intellect and Kalomaze.
443
+ </p>
444
+ <h3>Support Development</h3>
445
+ <p>
446
+ Development is limited by funding and resources. To
447
+ help support:
448
+ </p>
449
+ <p>- Contact on HF</p>
450
+ <p>- Email: [email protected]</p>
451
+ <p class="coffee-container">
452
+ <a
453
+ href="https://www.buymeacoffee.com/visually"
454
+ target="_blank"
455
+ rel="noopener noreferrer"
456
+ >
457
+ <img
458
+ src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png"
459
+ alt="Buy Me A Coffee"
460
+ height="45"
461
+ width="162"
462
+ />
463
+ </a>
464
+ </p>
465
+ </div>
466
+ </div>
467
+ </div>
468
+ </div>
469
+ </div>
470
+ <style>
471
+ @import url("https://fonts.googleapis.com/css2?family=Consolas&display=swap");
472
+ .crt-container {
473
+ padding: 10px;
474
+ max-width: 1000px;
475
+ margin: 0 auto;
476
+ width: 95%;
477
+ }
478
+ .crt-case {
479
+ background: #e8d7c3;
480
+ border-radius: 10px;
481
+ padding: 15px;
482
+ box-shadow:
483
+ inset -2px -2px 5px rgba(0, 0, 0, 0.3),
484
+ 2px 2px 5px rgba(0, 0, 0, 0.2);
485
+ }
486
+ .crt-inner-case {
487
+ background: #e8d7c3;
488
+ border-radius: 8px;
489
+ padding: 3px;
490
+ box-shadow:
491
+ inset -1px -1px 4px rgba(0, 0, 0, 0.3),
492
+ 1px 1px 4px rgba(0, 0, 0, 0.2);
493
+ }
494
+ .crt-bezel {
495
+ background: linear-gradient(145deg, #1a1a1a, #2a2a2a);
496
+ padding: 15px;
497
+ border-radius: 5px;
498
+ border: 3px solid #0a0a0a;
499
+ position: relative;
500
+ box-shadow:
501
+ inset 0 0 20px rgba(0, 0, 0, 0.5),
502
+ inset 0 0 4px rgba(0, 0, 0, 0.4),
503
+ inset 2px 2px 4px rgba(255, 255, 255, 0.05),
504
+ inset -2px -2px 4px rgba(0, 0, 0, 0.8),
505
+ 0 0 2px rgba(0, 0, 0, 0.6),
506
+ -1px -1px 4px rgba(255, 255, 255, 0.1),
507
+ 1px 1px 4px rgba(0, 0, 0, 0.3);
508
+ }
509
+ .crt-bezel::before {
510
+ content: "";
511
+ position: absolute;
512
+ top: 0;
513
+ left: 0;
514
+ right: 0;
515
+ bottom: 0;
516
+ background: linear-gradient(
517
+ 45deg,
518
+ rgba(255, 255, 255, 0.03) 0%,
519
+ rgba(255, 255, 255, 0) 40%,
520
+ rgba(0, 0, 0, 0.1) 60%,
521
+ rgba(0, 0, 0, 0.2) 100%
522
+ );
523
+ border-radius: 3px;
524
+ pointer-events: none;
525
+ }
526
+ .terminal-screen {
527
+ background: #111112;
528
+ padding: 20px;
529
+ border-radius: 15px;
530
+ position: relative;
531
+ overflow: hidden;
532
+ font-family: "Consolas", monospace;
533
+ font-size: clamp(12px, 1.5vw, 16px);
534
+ color: #e49b3e;
535
+ line-height: 1.4;
536
+ text-shadow: 0 0 2px #e49b3e;
537
+ /* Removed animation: flicker 0.15s infinite; */
538
+ filter: brightness(1.1) contrast(1.1);
539
+ box-shadow:
540
+ inset 0 0 30px rgba(0, 0, 0, 0.9),
541
+ inset 0 0 8px rgba(0, 0, 0, 0.8),
542
+ 0 0 5px rgba(0, 0, 0, 0.6);
543
+ max-width: 80ch;
544
+ margin: 0 auto;
545
+ }
546
+ .terminal-screen h2,
547
+ .terminal-screen h3 {
548
+ font-size: clamp(16px, 2vw, 20px);
549
+ margin-bottom: 1em;
550
+ color: #e49b3e;
551
+ }
552
+ .terminal-screen pre.code-block {
553
+ font-size: clamp(10px, 1.3vw, 14px);
554
+ white-space: pre; /* Changed from pre-wrap to pre */
555
+ margin: 1em 0;
556
+ background-color: #1a1a1a;
557
+ padding: 1em;
558
+ border-radius: 4px;
559
+ color: #e49b3e;
560
+ overflow-x: auto; /* Added to enable horizontal scrolling */
561
+ }
562
+ .terminal-screen::before {
563
+ content: "";
564
+ position: absolute;
565
+ top: 0;
566
+ left: 0;
567
+ right: 0;
568
+ bottom: 0;
569
+ background:
570
+ linear-gradient(
571
+ rgba(18, 16, 16, 0) 50%,
572
+ rgba(0, 0, 0, 0.25) 50%
573
+ ),
574
+ url("");
575
+ background-size: 100% 2.5px;
576
+ /* Removed animation: scan 1s linear infinite; */
577
+ pointer-events: none;
578
+ z-index: 2;
579
+ }
580
+ .terminal-screen::after {
581
+ content: "";
582
+ position: absolute;
583
+ top: 0;
584
+ left: 0;
585
+ right: 0;
586
+ bottom: 0;
587
+ background: radial-gradient(
588
+ circle at center,
589
+ rgba(17, 17, 18, 0) 0%,
590
+ rgba(17, 17, 18, 0.2) 50%,
591
+ rgba(17, 17, 18, 0.15) 100%
592
+ );
593
+ border-radius: 20px;
594
+ /* Removed animation: vignette-pulse 3s infinite; */
595
+ pointer-events: none;
596
+ z-index: 1;
597
+ }
598
+ .terminal-screen details {
599
+ margin: 1em 0;
600
+ padding: 0.5em;
601
+ border: 1px solid #e49b3e;
602
+ border-radius: 4px;
603
+ }
604
+ .terminal-screen summary {
605
+ cursor: pointer;
606
+ font-weight: bold;
607
+ margin: -0.5em;
608
+ padding: 0.5em;
609
+ border-bottom: 1px solid #e49b3e;
610
+ color: #e49b3e;
611
+ }
612
+ .terminal-screen details[open] summary {
613
+ margin-bottom: 0.5em;
614
+ }
615
+ .badge-container,
616
+ .coffee-container {
617
+ text-align: center;
618
+ margin: 1em 0;
619
+ }
620
+ .badge-container img,
621
+ .coffee-container img {
622
+ max-width: 100%;
623
+ height: auto;
624
+ }
625
+ .terminal-screen a {
626
+ color: #e49b3e;
627
+ text-decoration: underline;
628
+ transition: opacity 0.2s;
629
+ }
630
+ .terminal-screen a:hover {
631
+ opacity: 0.8;
632
+ }
633
+ .terminal-screen strong,
634
+ .terminal-screen em {
635
+ color: #f0f0f0; /* off-white color for user/system messages */
636
+ }
637
+ .terminal-screen p {
638
+ color: #f0f0f0; /* off-white color for assistant responses */
639
+ }
640
+ .terminal-screen p,
641
+ .terminal-screen li {
642
+ color: #e49b3e;
643
+ }
644
+ .terminal-screen code,
645
+ .terminal-screen kbd,
646
+ .terminal-screen samp {
647
+ color: #e49b3e;
648
+ font-family: "Consolas", monospace;
649
+ text-shadow: 0 0 2px #e49b3e;
650
+ background-color: #1a1a1a;
651
+ padding: 0.2em 0.4em;
652
+ border-radius: 4px;
653
+ }
654
+ .terminal-screen pre.code-block,
655
+ .terminal-screen pre {
656
+ font-size: clamp(10px, 1.3vw, 14px);
657
+ white-space: pre; /* Changed from pre-wrap to pre */
658
+ margin: 1em 0;
659
+ background-color: #1a1a1a;
660
+ padding: 1em;
661
+ border-radius: 4px;
662
+ color: #e49b3e;
663
+ overflow-x: auto; /* Added to enable horizontal scrolling */
664
+ }
665
+ .mancer-button-container {
666
+ text-align: left;
667
+ margin: 1em 0;
668
+ }
669
+ .mancer-button {
670
+ display: inline-flex;
671
+ align-items: center;
672
+ gap: 8px;
673
+ background: #1a1a1a;
674
+ color: #e49b3e;
675
+ padding: 15px 15px;
676
+ border: 2px solid #e49b3e;
677
+ border-radius: 5px;
678
+ text-decoration: none !important;
679
+ box-shadow: 0 0 10px rgba(228, 155, 62, 0.3);
680
+ transition: all 0.3s ease;
681
+ position: relative;
682
+ }
683
+ .mancer-text {
684
+ font-family: "Consolas", monospace;
685
+ font-weight: bold;
686
+ font-size: 20px;
687
+ text-shadow: 0 0 2px #e49b3e;
688
+ line-height: 1;
689
+ display: inline-block;
690
+ margin-left: -4px;
691
+ margin-top: -2px;
692
+ }
693
+ .mancer-button::before {
694
+ content: "⚡";
695
+ display: inline-flex;
696
+ align-items: center;
697
+ justify-content: center;
698
+ font-size: 20px;
699
+ line-height: 1;
700
+ }
701
+ .mancer-button:hover {
702
+ background: #2a2a2a;
703
+ box-shadow: 0 0 15px rgba(228, 155, 62, 0.5);
704
+ text-shadow: 0 0 4px #e49b3e;
705
+ text-decoration: none !important;
706
+ }
707
+ </style>
708
+ </html>