Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,708 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
thumbnail: >-
|
3 |
+
https://huggingface.co/PocketDoc/Dans-PersonalityEngine-V1.3.0-24b/resolve/main/resources/pe.png
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- general-purpose
|
7 |
+
- roleplay
|
8 |
+
- storywriting
|
9 |
+
- chemistry
|
10 |
+
- biology
|
11 |
+
- code
|
12 |
+
- climate
|
13 |
+
- axolotl
|
14 |
+
- text-generation-inference
|
15 |
+
- finetune
|
16 |
+
- legal
|
17 |
+
- medical
|
18 |
+
- finance
|
19 |
+
datasets:
|
20 |
+
- PocketDoc/Dans-Prosemaxx-RP
|
21 |
+
- PocketDoc/Dans-Personamaxx-Logs-2
|
22 |
+
- PocketDoc/Dans-Personamaxx-VN
|
23 |
+
- PocketDoc/Dans-Kinomaxx-VanillaBackrooms
|
24 |
+
- PocketDoc/Dans-Prosemaxx-Gutenberg
|
25 |
+
- PocketDoc/Dans-Prosemaxx-Cowriter-3-XL
|
26 |
+
- PocketDoc/Dans-Prosemaxx-Adventure
|
27 |
+
- PocketDoc/Dans-Failuremaxx-Adventure-3
|
28 |
+
- PocketDoc/Dans-Prosemaxx-InstructWriter-ZeroShot-2
|
29 |
+
- PocketDoc/Dans-Prosemaxx-InstructWriter-ZeroShot-3
|
30 |
+
- PocketDoc/Dans-Prosemaxx-InstructWriter-Continue-2
|
31 |
+
- PocketDoc/Dans-Prosemaxx-Instructwriter-Long
|
32 |
+
- PocketDoc/Dans-Prosemaxx-RepRemover-1
|
33 |
+
- PocketDoc/Dans-MemoryCore-CoreCurriculum-Small
|
34 |
+
- AquaV/US-Army-Survival-Sharegpt
|
35 |
+
- AquaV/Multi-Environment-Operations-Sharegpt
|
36 |
+
- AquaV/Resistance-Sharegpt
|
37 |
+
- AquaV/Interrogation-Sharegpt
|
38 |
+
- AquaV/Chemical-Biological-Safety-Applications-Sharegpt
|
39 |
+
- AquaV/Energetic-Materials-Sharegpt
|
40 |
+
- PocketDoc/Dans-Mathmaxx
|
41 |
+
- PJMixers/Math-Multiturn-1K-ShareGPT
|
42 |
+
- PocketDoc/Dans-Taskmaxx
|
43 |
+
- PocketDoc/Dans-Taskmaxx-DataPrepper
|
44 |
+
- PocketDoc/Dans-Taskmaxx-ConcurrentQA-Reworked
|
45 |
+
- PocketDoc/Dans-Taskmaxx-TableGPT
|
46 |
+
- PocketDoc/Dans-Taskmaxx-SciRIFF
|
47 |
+
- PocketDoc/Dans-Taskmaxx-Edit
|
48 |
+
- PocketDoc/Dans-Toolmaxx-Agent
|
49 |
+
- PocketDoc/Dans-Toolmaxx-ShellCommands
|
50 |
+
- PocketDoc/Dans-Toolmaxx-Functions-Toolbench
|
51 |
+
- PocketDoc/Dans-Toolmaxx-Functions-ToolACE
|
52 |
+
- PocketDoc/Dans-Toolmaxx-Functions-apigen-subset
|
53 |
+
- PocketDoc/Dans-Assistantmaxx-OpenAssistant2
|
54 |
+
- PocketDoc/Dans-Assistantmaxx-Opus-Merge-2
|
55 |
+
- PocketDoc/Dans-Assistantmaxx-sonnetorca-subset
|
56 |
+
- PocketDoc/Dans-Assistantmaxx-sonnetorca-subset-2
|
57 |
+
- PocketDoc/Dans-Assistantmaxx-Synthia
|
58 |
+
- PocketDoc/Dans-Assistantmaxx-ASL
|
59 |
+
- PocketDoc/Dans-Assistantmaxx-PersonaLLM-Opus
|
60 |
+
- PocketDoc/Dans-Assistantmaxx-LongAlign
|
61 |
+
- PocketDoc/Dans-Assistantmaxx-OpenLeecher-Instruct
|
62 |
+
- PocketDoc/Dans-Assistantmaxx-Tulu3-IF
|
63 |
+
- PocketDoc/Dans-Systemmaxx
|
64 |
+
- PocketDoc/Dans-Logicmaxx-SAT-AP
|
65 |
+
- PJMixers/grimulkan_theory-of-mind-ShareGPT
|
66 |
+
- PJMixers/grimulkan_physical-reasoning-ShareGPT
|
67 |
+
- PocketDoc/Dans-Reasoningmaxx-NaturalReasoning
|
68 |
+
- PocketDoc/Dans-Reasoningmaxx-WebInstruct
|
69 |
+
- PocketDoc/Dans-Reasoningmaxx-GeneralReasoning
|
70 |
+
- PocketDoc/Dans-Assistantmaxx-ClosedInstruct
|
71 |
+
language:
|
72 |
+
- en
|
73 |
+
- ar
|
74 |
+
- de
|
75 |
+
- fr
|
76 |
+
- es
|
77 |
+
- hi
|
78 |
+
- pt
|
79 |
+
- ja
|
80 |
+
- ko
|
81 |
+
base_model:
|
82 |
+
- mistralai/Mistral-Small-3.1-24B-Base-2503
|
83 |
+
pipeline_tag: text-generation
|
84 |
+
library_name: transformers
|
85 |
+
---
|
86 |
+
|
87 |
+
# <span style="color: #7FFF7F;">Dans-PersonalityEngine-V1.3.0-24b GGUF Models</span>
|
88 |
+
|
89 |
+
|
90 |
+
## <span style="color: #7F7FFF;">Model Generation Details</span>
|
91 |
+
|
92 |
+
This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`f5cd27b7`](https://github.com/ggerganov/llama.cpp/commit/f5cd27b71da3ac375a04a41643d14fc779a8057b).
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
## <span style="color: #7FFF7F;">Ultra-Low-Bit Quantization with IQ-DynamicGate (1-2 bit)</span>
|
98 |
+
|
99 |
+
Our latest quantization method introduces **precision-adaptive quantization** for ultra-low-bit models (1-2 bit), with benchmark-proven improvements on **Llama-3-8B**. This approach uses layer-specific strategies to preserve accuracy while maintaining extreme memory efficiency.
|
100 |
+
|
101 |
+
### **Benchmark Context**
|
102 |
+
All tests conducted on **Llama-3-8B-Instruct** using:
|
103 |
+
- Standard perplexity evaluation pipeline
|
104 |
+
- 2048-token context window
|
105 |
+
- Same prompt set across all quantizations
|
106 |
+
|
107 |
+
### **Method**
|
108 |
+
- **Dynamic Precision Allocation**:
|
109 |
+
- First/Last 25% of layers → IQ4_XS (selected layers)
|
110 |
+
- Middle 50% → IQ2_XXS/IQ3_S (increase efficiency)
|
111 |
+
- **Critical Component Protection**:
|
112 |
+
- Embeddings/output layers use Q5_K
|
113 |
+
- Reduces error propagation by 38% vs standard 1-2bit
|
114 |
+
|
115 |
+
### **Quantization Performance Comparison (Llama-3-8B)**
|
116 |
+
|
117 |
+
| Quantization | Standard PPL | DynamicGate PPL | Δ PPL | Std Size | DG Size | Δ Size | Std Speed | DG Speed |
|
118 |
+
|--------------|--------------|------------------|---------|----------|---------|--------|-----------|----------|
|
119 |
+
| IQ2_XXS | 11.30 | 9.84 | -12.9% | 2.5G | 2.6G | +0.1G | 234s | 246s |
|
120 |
+
| IQ2_XS | 11.72 | 11.63 | -0.8% | 2.7G | 2.8G | +0.1G | 242s | 246s |
|
121 |
+
| IQ2_S | 14.31 | 9.02 | -36.9% | 2.7G | 2.9G | +0.2G | 238s | 244s |
|
122 |
+
| IQ1_M | 27.46 | 15.41 | -43.9% | 2.2G | 2.5G | +0.3G | 206s | 212s |
|
123 |
+
| IQ1_S | 53.07 | 32.00 | -39.7% | 2.1G | 2.4G | +0.3G | 184s | 209s |
|
124 |
+
|
125 |
+
**Key**:
|
126 |
+
- PPL = Perplexity (lower is better)
|
127 |
+
- Δ PPL = Percentage change from standard to DynamicGate
|
128 |
+
- Speed = Inference time (CPU avx2, 2048 token context)
|
129 |
+
- Size differences reflect mixed quantization overhead
|
130 |
+
|
131 |
+
**Key Improvements:**
|
132 |
+
- 🔥 **IQ1_M** shows massive 43.9% perplexity reduction (27.46 → 15.41)
|
133 |
+
- 🚀 **IQ2_S** cuts perplexity by 36.9% while adding only 0.2GB
|
134 |
+
- ⚡ **IQ1_S** maintains 39.7% better accuracy despite 1-bit quantization
|
135 |
+
|
136 |
+
**Tradeoffs:**
|
137 |
+
- All variants have modest size increases (0.1-0.3GB)
|
138 |
+
- Inference speeds remain comparable (<5% difference)
|
139 |
+
|
140 |
+
|
141 |
+
### **When to Use These Models**
|
142 |
+
📌 **Fitting models into GPU VRAM**
|
143 |
+
|
144 |
+
✔ **Memory-constrained deployments**
|
145 |
+
|
146 |
+
✔ **Cpu and Edge Devices** where 1-2bit errors can be tolerated
|
147 |
+
|
148 |
+
✔ **Research** into ultra-low-bit quantization
|
149 |
+
|
150 |
+
|
151 |
+
|
152 |
+
## **Choosing the Right Model Format**
|
153 |
+
|
154 |
+
Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**.
|
155 |
+
|
156 |
+
### **BF16 (Brain Float 16) – Use if BF16 acceleration is available**
|
157 |
+
- A 16-bit floating-point format designed for **faster computation** while retaining good precision.
|
158 |
+
- Provides **similar dynamic range** as FP32 but with **lower memory usage**.
|
159 |
+
- Recommended if your hardware supports **BF16 acceleration** (check your device's specs).
|
160 |
+
- Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32.
|
161 |
+
|
162 |
+
📌 **Use BF16 if:**
|
163 |
+
✔ Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs).
|
164 |
+
✔ You want **higher precision** while saving memory.
|
165 |
+
✔ You plan to **requantize** the model into another format.
|
166 |
+
|
167 |
+
📌 **Avoid BF16 if:**
|
168 |
+
❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower).
|
169 |
+
❌ You need compatibility with older devices that lack BF16 optimization.
|
170 |
+
|
171 |
+
---
|
172 |
+
|
173 |
+
### **F16 (Float 16) – More widely supported than BF16**
|
174 |
+
- A 16-bit floating-point **high precision** but with less of range of values than BF16.
|
175 |
+
- Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs).
|
176 |
+
- Slightly lower numerical precision than BF16 but generally sufficient for inference.
|
177 |
+
|
178 |
+
📌 **Use F16 if:**
|
179 |
+
✔ Your hardware supports **FP16** but **not BF16**.
|
180 |
+
✔ You need a **balance between speed, memory usage, and accuracy**.
|
181 |
+
✔ You are running on a **GPU** or another device optimized for FP16 computations.
|
182 |
+
|
183 |
+
📌 **Avoid F16 if:**
|
184 |
+
❌ Your device lacks **native FP16 support** (it may run slower than expected).
|
185 |
+
❌ You have memory limitations.
|
186 |
+
|
187 |
+
---
|
188 |
+
|
189 |
+
### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference**
|
190 |
+
Quantization reduces model size and memory usage while maintaining as much accuracy as possible.
|
191 |
+
- **Lower-bit models (Q4_K)** → **Best for minimal memory usage**, may have lower precision.
|
192 |
+
- **Higher-bit models (Q6_K, Q8_0)** → **Better accuracy**, requires more memory.
|
193 |
+
|
194 |
+
📌 **Use Quantized Models if:**
|
195 |
+
✔ You are running inference on a **CPU** and need an optimized model.
|
196 |
+
✔ Your device has **low VRAM** and cannot load full-precision models.
|
197 |
+
✔ You want to reduce **memory footprint** while keeping reasonable accuracy.
|
198 |
+
|
199 |
+
📌 **Avoid Quantized Models if:**
|
200 |
+
❌ You need **maximum accuracy** (full-precision models are better for this).
|
201 |
+
❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16).
|
202 |
+
|
203 |
+
---
|
204 |
+
|
205 |
+
### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)**
|
206 |
+
These models are optimized for **extreme memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint.
|
207 |
+
|
208 |
+
- **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **extreme memory efficiency**.
|
209 |
+
- **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large.
|
210 |
+
- **Trade-off**: Lower accuracy compared to higher-bit quantizations.
|
211 |
+
|
212 |
+
- **IQ3_S**: Small block size for **maximum memory efficiency**.
|
213 |
+
- **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive.
|
214 |
+
|
215 |
+
- **IQ3_M**: Medium block size for better accuracy than **IQ3_S**.
|
216 |
+
- **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting.
|
217 |
+
|
218 |
+
- **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy.
|
219 |
+
- **Use case**: Best for **low-memory devices** where **Q6_K** is too large.
|
220 |
+
|
221 |
+
- **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**.
|
222 |
+
- **Use case**: Best for **ARM-based devices** or **low-memory environments**.
|
223 |
+
|
224 |
+
---
|
225 |
+
|
226 |
+
### **Summary Table: Model Format Selection**
|
227 |
+
|
228 |
+
| Model Format | Precision | Memory Usage | Device Requirements | Best Use Case |
|
229 |
+
|--------------|------------|---------------|----------------------|---------------|
|
230 |
+
| **BF16** | Highest | High | BF16-supported GPU/CPUs | High-speed inference with reduced memory |
|
231 |
+
| **F16** | High | High | FP16-supported devices | GPU inference when BF16 isn't available |
|
232 |
+
| **Q4_K** | Medium Low | Low | CPU or Low-VRAM devices | Best for memory-constrained environments |
|
233 |
+
| **Q6_K** | Medium | Moderate | CPU with more memory | Better accuracy while still being quantized |
|
234 |
+
| **Q8_0** | High | Moderate | CPU or GPU with enough VRAM | Best accuracy among quantized models |
|
235 |
+
| **IQ3_XS** | Very Low | Very Low | Ultra-low-memory devices | Extreme memory efficiency and low accuracy |
|
236 |
+
| **Q4_0** | Low | Low | ARM or low-memory devices | llama.cpp can optimize for ARM devices |
|
237 |
+
|
238 |
+
---
|
239 |
+
|
240 |
+
## **Included Files & Details**
|
241 |
+
|
242 |
+
### `Dans-PersonalityEngine-V1.3.0-24b-bf16.gguf`
|
243 |
+
- Model weights preserved in **BF16**.
|
244 |
+
- Use this if you want to **requantize** the model into a different format.
|
245 |
+
- Best if your device supports **BF16 acceleration**.
|
246 |
+
|
247 |
+
### `Dans-PersonalityEngine-V1.3.0-24b-f16.gguf`
|
248 |
+
- Model weights stored in **F16**.
|
249 |
+
- Use if your device supports **FP16**, especially if BF16 is not available.
|
250 |
+
|
251 |
+
### `Dans-PersonalityEngine-V1.3.0-24b-bf16-q8_0.gguf`
|
252 |
+
- **Output & embeddings** remain in **BF16**.
|
253 |
+
- All other layers quantized to **Q8_0**.
|
254 |
+
- Use if your device supports **BF16** and you want a quantized version.
|
255 |
+
|
256 |
+
### `Dans-PersonalityEngine-V1.3.0-24b-f16-q8_0.gguf`
|
257 |
+
- **Output & embeddings** remain in **F16**.
|
258 |
+
- All other layers quantized to **Q8_0**.
|
259 |
+
|
260 |
+
### `Dans-PersonalityEngine-V1.3.0-24b-q4_k.gguf`
|
261 |
+
- **Output & embeddings** quantized to **Q8_0**.
|
262 |
+
- All other layers quantized to **Q4_K**.
|
263 |
+
- Good for **CPU inference** with limited memory.
|
264 |
+
|
265 |
+
### `Dans-PersonalityEngine-V1.3.0-24b-q4_k_s.gguf`
|
266 |
+
- Smallest **Q4_K** variant, using less memory at the cost of accuracy.
|
267 |
+
- Best for **very low-memory setups**.
|
268 |
+
|
269 |
+
### `Dans-PersonalityEngine-V1.3.0-24b-q6_k.gguf`
|
270 |
+
- **Output & embeddings** quantized to **Q8_0**.
|
271 |
+
- All other layers quantized to **Q6_K** .
|
272 |
+
|
273 |
+
### `Dans-PersonalityEngine-V1.3.0-24b-q8_0.gguf`
|
274 |
+
- Fully **Q8** quantized model for better accuracy.
|
275 |
+
- Requires **more memory** but offers higher precision.
|
276 |
+
|
277 |
+
### `Dans-PersonalityEngine-V1.3.0-24b-iq3_xs.gguf`
|
278 |
+
- **IQ3_XS** quantization, optimized for **extreme memory efficiency**.
|
279 |
+
- Best for **ultra-low-memory devices**.
|
280 |
+
|
281 |
+
### `Dans-PersonalityEngine-V1.3.0-24b-iq3_m.gguf`
|
282 |
+
- **IQ3_M** quantization, offering a **medium block size** for better accuracy.
|
283 |
+
- Suitable for **low-memory devices**.
|
284 |
+
|
285 |
+
### `Dans-PersonalityEngine-V1.3.0-24b-q4_0.gguf`
|
286 |
+
- Pure **Q4_0** quantization, optimized for **ARM devices**.
|
287 |
+
- Best for **low-memory environments**.
|
288 |
+
- Prefer IQ4_NL for better accuracy.
|
289 |
+
|
290 |
+
# <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
|
291 |
+
❤ **Please click "Like" if you find this useful!**
|
292 |
+
Help me test my **AI-Powered Network Monitor Assistant** with **quantum-ready security checks**:
|
293 |
+
👉 [Free Network Monitor](https://readyforquantum.com/dashboard/?assistant=open)
|
294 |
+
|
295 |
+
💬 **How to test**:
|
296 |
+
Choose an **AI assistant type**:
|
297 |
+
- `TurboLLM` (GPT-4o-mini)
|
298 |
+
- `HugLLM` (Hugginface Open-source)
|
299 |
+
- `TestLLM` (Experimental CPU-only)
|
300 |
+
|
301 |
+
### **What I’m Testing**
|
302 |
+
I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:
|
303 |
+
- **Function calling** against live network services
|
304 |
+
- **How small can a model go** while still handling:
|
305 |
+
- Automated **Nmap scans**
|
306 |
+
- **Quantum-readiness checks**
|
307 |
+
- **Network Monitoring tasks**
|
308 |
+
|
309 |
+
🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads):
|
310 |
+
- ✅ **Zero-configuration setup**
|
311 |
+
- ⏳ 30s load time (slow inference but **no API costs**)
|
312 |
+
- 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!
|
313 |
+
|
314 |
+
### **Other Assistants**
|
315 |
+
🟢 **TurboLLM** – Uses **gpt-4o-mini** for:
|
316 |
+
- **Create custom cmd processors to run .net code on Free Network Monitor Agents**
|
317 |
+
- **Real-time network diagnostics and monitoring**
|
318 |
+
- **Security Audits**
|
319 |
+
- **Penetration testing** (Nmap/Metasploit)
|
320 |
+
- 🔑 Get more tokens by logging in or [downloading our Free Network Monitor Agent with integrated AI Assistant](https://readyforquantum.com/download)
|
321 |
+
|
322 |
+
🔵 **HugLLM** – Latest Open-source models:
|
323 |
+
- 🌐 Runs on Hugging Face Inference API
|
324 |
+
|
325 |
+
### 💡 **Example commands to you could test**:
|
326 |
+
1. `"Give me info on my websites SSL certificate"`
|
327 |
+
2. `"Check if my server is using quantum safe encyption for communication"`
|
328 |
+
3. `"Run a comprehensive security audit on my server"`
|
329 |
+
4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Free Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution!
|
330 |
+
|
331 |
+
|
332 |
+
<!doctype html>
|
333 |
+
<html lang="en">
|
334 |
+
<head>
|
335 |
+
<meta charset="UTF-8" />
|
336 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
337 |
+
<title>Dans-PersonalityEngine-V1.3.0-24b</title>
|
338 |
+
</head>
|
339 |
+
<div class="crt-container">
|
340 |
+
<div class="crt-case">
|
341 |
+
<div class="crt-inner-case">
|
342 |
+
<div class="crt-bezel">
|
343 |
+
<div class="terminal-screen">
|
344 |
+
<div style="text-align: center">
|
345 |
+
<h2>Dans-PersonalityEngine-V1.3.0-24b</h2>
|
346 |
+
<pre class="code-block" style="display: inline-block; text-align: left; font-size: clamp(2px, 0.8vw, 14px); line-height: 1.2; max-width: 100%; overflow: hidden; white-space: pre;">
|
347 |
+
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠀⠄⠀⡂⠀⠁⡄⢀⠁⢀⣈⡄⠌⠐⠠⠤⠄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀
|
348 |
+
⠀⠀⠀⠀⠀⠀⠀⠀⡄⠆⠀⢠⠀⠛⣸⣄⣶⣾⡷⡾⠘⠃⢀⠀⣴⠀⡄⠰⢆⣠⠘⠰⠀⡀⠀⠀⠀⠀⠀
|
349 |
+
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠃⠀⡋⢀⣤⡿⠟⠋⠁⠀⡠⠤⢇⠋⠀⠈⠃⢀⠀⠈⡡⠤⠀⠀⠁⢄⠀⠀⠀⠀
|
350 |
+
⠀⠀⠀⠀⠀⠁⡂⠀⠀⣀⣔⣧⠟⠋⠀⢀⡄⠀⠪⣀⡂⢁⠛⢆⠀⠀⠀⢎⢀⠄⢡⠢⠛⠠⡀⠀⠄⠀⠀
|
351 |
+
⠀⠀⡀⠡⢑⠌⠈⣧⣮⢾⢏⠁⠀⠀⡀⠠⠦⠈⠀⠞⠑⠁⠀⠀⢧⡄⠈⡜⠷⠒⢸⡇⠐⠇⠿⠈⣖⠂⠀
|
352 |
+
⠀⢌⠀⠤⠀⢠⣞⣾⡗⠁⠀⠈⠁⢨⡼⠀⠀⠀⢀⠀⣀⡤⣄⠄⠈⢻⡇⠀⠐⣠⠜⠑⠁⠀⣀⡔⡿⠨⡄
|
353 |
+
⠈⠂⠀⠆⠀⣼⣾⠟⠀⠑⠀⡐⠗⠉⠀⠐⠶⣤⡵⠋⠀⠠⠹⡌⡀⠘⠇⢠⣾⡣⣀⡴⠋⠅⠈⢊⠠⡱⡀
|
354 |
+
⠪⠑⢌⠂⣼⣿⡟⠀⠀⠙⠀⠀⠀⡀⠀⠀⠐⡞⡐⠀⠀⡧⠀⢀⠠⠀⣁⠾⡇⠀⠙⡁⠀⠀⢀⣨⣄⡠⢱
|
355 |
+
⣸⠈⠊⠙⣛⣿⡧⠔⠚⠛⠳⣄⣀⡬⠤⠬⠼⡣⠃⠀⢀⡗⠀⡤⠞⠙⠄⠂⠃⢀⣠⣤⠶⠙⠅⠁⠃⠋⠈
|
356 |
+
⢋⠼⣀⠰⢯⢿⠁⠀⢢⠀⠀⢐⠋⡀⠀⠈⠁⠀⣀⣰⠏⠒⠙⠈⠀⣀⡤⠞⢁⣼⠏⠘⢀⣀⢤⢤⡐⢈⠂
|
357 |
+
⠀⠢⠀⠀⠸⣿⡄⠲⠚⠘⠚⠃⢀⠀⠈⢋⠶⠛⠉⠉⢃⣀⢤⢾⠋⣁⡤⡚⠁⢹⠁⠠⢛⠠⠬⠁⢬⠀⠀
|
358 |
+
⠀⠈⢳⣒⠋⠉⣿⢐⠠⣀⣃⠀⠀⠉⠂⢁⣀⣀⡤⢞⠩⢑⡨⠰⡞⠁⠁⢀⡠⠾⠎⡈⡌⡈⡓⡀⠄⠀⠀
|
359 |
+
⠀⠀⠀⠉⠘⠃⢻⡒⠦⢼⣿⣛⣻⣿⡷⢄⣀⣀⣠⣴⢾⣿⣆⣡⡄⣠⣪⡿⣷⣾⣷⣧⡡⠅⣇⠍⠀⠀⠀
|
360 |
+
⠀⠀⠀⠀⠀⠀⠀⠙⠒⠒⠛⠛⠓⠉⢹⠀⣷⠴⣻⣽⡻⢧⢻⡿⡏⣼⢿⣻⢾⣿⣿⣿⡿⢠ ⠀⠀⠀⠀
|
361 |
+
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠂⠻⠨⠰⢋⡅⠉⣑⡇⡗⣿⢂⣸⡿⣿⣛⠿⠃⠁ ⠀⠀⠀⠀
|
362 |
+
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠳⣌⣙⣸⢧⣿⣕⣼⣇⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀
|
363 |
+
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣸⢧⢟⢟⡟⣾⠀⠀⠀⠀⠀⠀⠀⠀⠀
|
364 |
+
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢰⠙⣾⡟⣻⡕⣹⠀⠀⠀⠀⠀⠀⠀⠀⠀
|
365 |
+
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢸⢰⡏⢠⡿⠾⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀
|
366 |
+
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢸⠸⡇⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
|
367 |
+
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⢸⢸⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
|
368 |
+
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
|
369 |
+
</pre>
|
370 |
+
</div>
|
371 |
+
<p>
|
372 |
+
Dans-PersonalityEngine is a versatile model series
|
373 |
+
fine-tuned on 50+ specialized datasets, designed to
|
374 |
+
excel at both creative tasks (like roleplay and
|
375 |
+
co-writing) and technical challenges (such as code
|
376 |
+
generation, tool use, and complex reasoning).
|
377 |
+
</p>
|
378 |
+
<p>
|
379 |
+
V1.3.0 introduces multilingual capabilities with
|
380 |
+
support for 10 languages and enhanced domain
|
381 |
+
expertise across multiple fields. The primary
|
382 |
+
language is still English and that is where peak
|
383 |
+
performance can be expected.
|
384 |
+
</p>
|
385 |
+
<h3>Multilingual Support</h3>
|
386 |
+
<pre class="code-block">
|
387 |
+
Arabic Chinese English French German
|
388 |
+
Hindi Japanese Korean Portuguese Spanish</pre>
|
389 |
+
<h3>Key Details</h3>
|
390 |
+
<pre class="code-block">
|
391 |
+
BASE MODEL: mistralai/Mistral-Small-3.1-24B-Base-2503
|
392 |
+
LICENSE: apache-2.0
|
393 |
+
LANGUAGE: Multilingual with 10 supported languages
|
394 |
+
CONTEXT LENGTH: 32768 tokens, 131072 with degraded recall</pre>
|
395 |
+
<h3>Recommended Settings</h3>
|
396 |
+
<pre class="code-block">
|
397 |
+
TEMPERATURE: 1.0
|
398 |
+
TOP_P: 0.9</pre>
|
399 |
+
<h3>Prompting Format</h3>
|
400 |
+
<p>
|
401 |
+
The model uses the following format I'll refer to as
|
402 |
+
"DanChat-2":
|
403 |
+
</p>
|
404 |
+
<pre class="code-block">
|
405 |
+
<|system|>system prompt<|endoftext|><|user|>Hi there!<|endoftext|><|assistant|>Hey, how can I help?<|endoftext|></pre>
|
406 |
+
<h3>Why not ChatML?</h3>
|
407 |
+
<p>
|
408 |
+
While ChatML is a standard format for LLMs, it has
|
409 |
+
limitations. DanChat-2 uses special tokens
|
410 |
+
for each role, this reduces biases and helps the model adapt to different tasks more readily.
|
411 |
+
</p>
|
412 |
+
<h3>SillyTavern Template</h3>
|
413 |
+
<p>
|
414 |
+
<a
|
415 |
+
href="https://huggingface.co/PocketDoc/Dans-PersonalityEngine-V1.3.0-24b/resolve/main/resources/DanChat-2.json?download=true"
|
416 |
+
download
|
417 |
+
target="_blank"
|
418 |
+
rel="noopener noreferrer"
|
419 |
+
>
|
420 |
+
Download Master JSON
|
421 |
+
</a>
|
422 |
+
</p>
|
423 |
+
<h3>Inference Provider</h3>
|
424 |
+
<p>
|
425 |
+
This model and others are available from ⚡Mancer AI for
|
426 |
+
those interested in high quality inference without
|
427 |
+
owning or renting expensive hardware.
|
428 |
+
</p>
|
429 |
+
<p class="mancer-button-container">
|
430 |
+
<a
|
431 |
+
href="https://mancer.tech/"
|
432 |
+
target="_blank"
|
433 |
+
rel="noopener noreferrer"
|
434 |
+
class="mancer-button"
|
435 |
+
>
|
436 |
+
<span class="mancer-text">mancer</span>
|
437 |
+
</a>
|
438 |
+
</p>
|
439 |
+
<h3>Training Process</h3>
|
440 |
+
<p>
|
441 |
+
The model was trained using Axolotl on 8x H100 GPUs
|
442 |
+
for 50 hours. The resources to train this model were provided by Prime Intellect and Kalomaze.
|
443 |
+
</p>
|
444 |
+
<h3>Support Development</h3>
|
445 |
+
<p>
|
446 |
+
Development is limited by funding and resources. To
|
447 |
+
help support:
|
448 |
+
</p>
|
449 |
+
<p>- Contact on HF</p>
|
450 |
+
<p>- Email: [email protected]</p>
|
451 |
+
<p class="coffee-container">
|
452 |
+
<a
|
453 |
+
href="https://www.buymeacoffee.com/visually"
|
454 |
+
target="_blank"
|
455 |
+
rel="noopener noreferrer"
|
456 |
+
>
|
457 |
+
<img
|
458 |
+
src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png"
|
459 |
+
alt="Buy Me A Coffee"
|
460 |
+
height="45"
|
461 |
+
width="162"
|
462 |
+
/>
|
463 |
+
</a>
|
464 |
+
</p>
|
465 |
+
</div>
|
466 |
+
</div>
|
467 |
+
</div>
|
468 |
+
</div>
|
469 |
+
</div>
|
470 |
+
<style>
|
471 |
+
@import url("https://fonts.googleapis.com/css2?family=Consolas&display=swap");
|
472 |
+
.crt-container {
|
473 |
+
padding: 10px;
|
474 |
+
max-width: 1000px;
|
475 |
+
margin: 0 auto;
|
476 |
+
width: 95%;
|
477 |
+
}
|
478 |
+
.crt-case {
|
479 |
+
background: #e8d7c3;
|
480 |
+
border-radius: 10px;
|
481 |
+
padding: 15px;
|
482 |
+
box-shadow:
|
483 |
+
inset -2px -2px 5px rgba(0, 0, 0, 0.3),
|
484 |
+
2px 2px 5px rgba(0, 0, 0, 0.2);
|
485 |
+
}
|
486 |
+
.crt-inner-case {
|
487 |
+
background: #e8d7c3;
|
488 |
+
border-radius: 8px;
|
489 |
+
padding: 3px;
|
490 |
+
box-shadow:
|
491 |
+
inset -1px -1px 4px rgba(0, 0, 0, 0.3),
|
492 |
+
1px 1px 4px rgba(0, 0, 0, 0.2);
|
493 |
+
}
|
494 |
+
.crt-bezel {
|
495 |
+
background: linear-gradient(145deg, #1a1a1a, #2a2a2a);
|
496 |
+
padding: 15px;
|
497 |
+
border-radius: 5px;
|
498 |
+
border: 3px solid #0a0a0a;
|
499 |
+
position: relative;
|
500 |
+
box-shadow:
|
501 |
+
inset 0 0 20px rgba(0, 0, 0, 0.5),
|
502 |
+
inset 0 0 4px rgba(0, 0, 0, 0.4),
|
503 |
+
inset 2px 2px 4px rgba(255, 255, 255, 0.05),
|
504 |
+
inset -2px -2px 4px rgba(0, 0, 0, 0.8),
|
505 |
+
0 0 2px rgba(0, 0, 0, 0.6),
|
506 |
+
-1px -1px 4px rgba(255, 255, 255, 0.1),
|
507 |
+
1px 1px 4px rgba(0, 0, 0, 0.3);
|
508 |
+
}
|
509 |
+
.crt-bezel::before {
|
510 |
+
content: "";
|
511 |
+
position: absolute;
|
512 |
+
top: 0;
|
513 |
+
left: 0;
|
514 |
+
right: 0;
|
515 |
+
bottom: 0;
|
516 |
+
background: linear-gradient(
|
517 |
+
45deg,
|
518 |
+
rgba(255, 255, 255, 0.03) 0%,
|
519 |
+
rgba(255, 255, 255, 0) 40%,
|
520 |
+
rgba(0, 0, 0, 0.1) 60%,
|
521 |
+
rgba(0, 0, 0, 0.2) 100%
|
522 |
+
);
|
523 |
+
border-radius: 3px;
|
524 |
+
pointer-events: none;
|
525 |
+
}
|
526 |
+
.terminal-screen {
|
527 |
+
background: #111112;
|
528 |
+
padding: 20px;
|
529 |
+
border-radius: 15px;
|
530 |
+
position: relative;
|
531 |
+
overflow: hidden;
|
532 |
+
font-family: "Consolas", monospace;
|
533 |
+
font-size: clamp(12px, 1.5vw, 16px);
|
534 |
+
color: #e49b3e;
|
535 |
+
line-height: 1.4;
|
536 |
+
text-shadow: 0 0 2px #e49b3e;
|
537 |
+
/* Removed animation: flicker 0.15s infinite; */
|
538 |
+
filter: brightness(1.1) contrast(1.1);
|
539 |
+
box-shadow:
|
540 |
+
inset 0 0 30px rgba(0, 0, 0, 0.9),
|
541 |
+
inset 0 0 8px rgba(0, 0, 0, 0.8),
|
542 |
+
0 0 5px rgba(0, 0, 0, 0.6);
|
543 |
+
max-width: 80ch;
|
544 |
+
margin: 0 auto;
|
545 |
+
}
|
546 |
+
.terminal-screen h2,
|
547 |
+
.terminal-screen h3 {
|
548 |
+
font-size: clamp(16px, 2vw, 20px);
|
549 |
+
margin-bottom: 1em;
|
550 |
+
color: #e49b3e;
|
551 |
+
}
|
552 |
+
.terminal-screen pre.code-block {
|
553 |
+
font-size: clamp(10px, 1.3vw, 14px);
|
554 |
+
white-space: pre; /* Changed from pre-wrap to pre */
|
555 |
+
margin: 1em 0;
|
556 |
+
background-color: #1a1a1a;
|
557 |
+
padding: 1em;
|
558 |
+
border-radius: 4px;
|
559 |
+
color: #e49b3e;
|
560 |
+
overflow-x: auto; /* Added to enable horizontal scrolling */
|
561 |
+
}
|
562 |
+
.terminal-screen::before {
|
563 |
+
content: "";
|
564 |
+
position: absolute;
|
565 |
+
top: 0;
|
566 |
+
left: 0;
|
567 |
+
right: 0;
|
568 |
+
bottom: 0;
|
569 |
+
background:
|
570 |
+
linear-gradient(
|
571 |
+
rgba(18, 16, 16, 0) 50%,
|
572 |
+
rgba(0, 0, 0, 0.25) 50%
|
573 |
+
),
|
574 |
+
url("");
|
575 |
+
background-size: 100% 2.5px;
|
576 |
+
/* Removed animation: scan 1s linear infinite; */
|
577 |
+
pointer-events: none;
|
578 |
+
z-index: 2;
|
579 |
+
}
|
580 |
+
.terminal-screen::after {
|
581 |
+
content: "";
|
582 |
+
position: absolute;
|
583 |
+
top: 0;
|
584 |
+
left: 0;
|
585 |
+
right: 0;
|
586 |
+
bottom: 0;
|
587 |
+
background: radial-gradient(
|
588 |
+
circle at center,
|
589 |
+
rgba(17, 17, 18, 0) 0%,
|
590 |
+
rgba(17, 17, 18, 0.2) 50%,
|
591 |
+
rgba(17, 17, 18, 0.15) 100%
|
592 |
+
);
|
593 |
+
border-radius: 20px;
|
594 |
+
/* Removed animation: vignette-pulse 3s infinite; */
|
595 |
+
pointer-events: none;
|
596 |
+
z-index: 1;
|
597 |
+
}
|
598 |
+
.terminal-screen details {
|
599 |
+
margin: 1em 0;
|
600 |
+
padding: 0.5em;
|
601 |
+
border: 1px solid #e49b3e;
|
602 |
+
border-radius: 4px;
|
603 |
+
}
|
604 |
+
.terminal-screen summary {
|
605 |
+
cursor: pointer;
|
606 |
+
font-weight: bold;
|
607 |
+
margin: -0.5em;
|
608 |
+
padding: 0.5em;
|
609 |
+
border-bottom: 1px solid #e49b3e;
|
610 |
+
color: #e49b3e;
|
611 |
+
}
|
612 |
+
.terminal-screen details[open] summary {
|
613 |
+
margin-bottom: 0.5em;
|
614 |
+
}
|
615 |
+
.badge-container,
|
616 |
+
.coffee-container {
|
617 |
+
text-align: center;
|
618 |
+
margin: 1em 0;
|
619 |
+
}
|
620 |
+
.badge-container img,
|
621 |
+
.coffee-container img {
|
622 |
+
max-width: 100%;
|
623 |
+
height: auto;
|
624 |
+
}
|
625 |
+
.terminal-screen a {
|
626 |
+
color: #e49b3e;
|
627 |
+
text-decoration: underline;
|
628 |
+
transition: opacity 0.2s;
|
629 |
+
}
|
630 |
+
.terminal-screen a:hover {
|
631 |
+
opacity: 0.8;
|
632 |
+
}
|
633 |
+
.terminal-screen strong,
|
634 |
+
.terminal-screen em {
|
635 |
+
color: #f0f0f0; /* off-white color for user/system messages */
|
636 |
+
}
|
637 |
+
.terminal-screen p {
|
638 |
+
color: #f0f0f0; /* off-white color for assistant responses */
|
639 |
+
}
|
640 |
+
.terminal-screen p,
|
641 |
+
.terminal-screen li {
|
642 |
+
color: #e49b3e;
|
643 |
+
}
|
644 |
+
.terminal-screen code,
|
645 |
+
.terminal-screen kbd,
|
646 |
+
.terminal-screen samp {
|
647 |
+
color: #e49b3e;
|
648 |
+
font-family: "Consolas", monospace;
|
649 |
+
text-shadow: 0 0 2px #e49b3e;
|
650 |
+
background-color: #1a1a1a;
|
651 |
+
padding: 0.2em 0.4em;
|
652 |
+
border-radius: 4px;
|
653 |
+
}
|
654 |
+
.terminal-screen pre.code-block,
|
655 |
+
.terminal-screen pre {
|
656 |
+
font-size: clamp(10px, 1.3vw, 14px);
|
657 |
+
white-space: pre; /* Changed from pre-wrap to pre */
|
658 |
+
margin: 1em 0;
|
659 |
+
background-color: #1a1a1a;
|
660 |
+
padding: 1em;
|
661 |
+
border-radius: 4px;
|
662 |
+
color: #e49b3e;
|
663 |
+
overflow-x: auto; /* Added to enable horizontal scrolling */
|
664 |
+
}
|
665 |
+
.mancer-button-container {
|
666 |
+
text-align: left;
|
667 |
+
margin: 1em 0;
|
668 |
+
}
|
669 |
+
.mancer-button {
|
670 |
+
display: inline-flex;
|
671 |
+
align-items: center;
|
672 |
+
gap: 8px;
|
673 |
+
background: #1a1a1a;
|
674 |
+
color: #e49b3e;
|
675 |
+
padding: 15px 15px;
|
676 |
+
border: 2px solid #e49b3e;
|
677 |
+
border-radius: 5px;
|
678 |
+
text-decoration: none !important;
|
679 |
+
box-shadow: 0 0 10px rgba(228, 155, 62, 0.3);
|
680 |
+
transition: all 0.3s ease;
|
681 |
+
position: relative;
|
682 |
+
}
|
683 |
+
.mancer-text {
|
684 |
+
font-family: "Consolas", monospace;
|
685 |
+
font-weight: bold;
|
686 |
+
font-size: 20px;
|
687 |
+
text-shadow: 0 0 2px #e49b3e;
|
688 |
+
line-height: 1;
|
689 |
+
display: inline-block;
|
690 |
+
margin-left: -4px;
|
691 |
+
margin-top: -2px;
|
692 |
+
}
|
693 |
+
.mancer-button::before {
|
694 |
+
content: "⚡";
|
695 |
+
display: inline-flex;
|
696 |
+
align-items: center;
|
697 |
+
justify-content: center;
|
698 |
+
font-size: 20px;
|
699 |
+
line-height: 1;
|
700 |
+
}
|
701 |
+
.mancer-button:hover {
|
702 |
+
background: #2a2a2a;
|
703 |
+
box-shadow: 0 0 15px rgba(228, 155, 62, 0.5);
|
704 |
+
text-shadow: 0 0 4px #e49b3e;
|
705 |
+
text-decoration: none !important;
|
706 |
+
}
|
707 |
+
</style>
|
708 |
+
</html>
|